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Abstract

In this work, we propose an unsupervised method for
learning dense correspondences between shapes using a re-
cent deep functional map framework. Instead of depending
on ground-truth correspondences or the computationally
expensive geodesic distances, we use heat kernels. These
can be computed quickly during training as the supervisor
signal. Moreover, we propose a curriculum learning strat-
egy using different heat diffusion times which provide differ-
ent levels of difficulty during optimization without any sam-
pling mechanism or hard example mining. We present the
results of our method on different benchmarks which have
various challenges like partiality, topological noise and dif-
ferent connectivity.

1. Introduction
With the growing market of 3D scanners and captur-

ing systems, applications around 3D scanning are becom-
ing more popular. One of the main building blocks of these
applications in the domain of Augmented Reality/Virtual
Reality is aligning scans and calculating correspondences
between them. Correspondences are necessary to apply
detected user motion to an avatar or transfer properties of
objects in the virtual world. Finding correspondences be-
tween shapes is a difficult problem in computer vision and
graphics. Especially challenging cases are non-rigid mo-
tion, scanning noise (e.g. partiality, topological noise), dif-
ferent resolutions or connectivity between source and target
shapes.

In recent years, various approaches were suggested for
the non-rigid shape correspondence problem. Similar to
the development in image processing, the first approaches
chose to solve a descriptor matching problem [4, 10, 46, 48,
49]. However, designing descriptors which are invariant to
various kinds of deformations and noise, as well as suffi-
ciently discriminative is not easy. Nowadays better results
can be achieved with learned descriptors instead of hand-
crafted ones [7, 8, 31, 16, 14].

Recent methods have adapted to include other parts of

correspondence pipelines into the learning process instead
of just descriptors. With the functional map framework
[37], shape matching can be formulated as a learning prob-
lem in function space with the aim of minimizing distance
distortion [28]. This approach uses ground truth correspon-
dences for training the network in order to determine the
distortion. Later, [21, 45] introduced networks which can
be trained in an unsupervised way. This is a big advan-
tage, because ground-truth correspondences only exist for a
very limited amount of shape collections. While Halimi et
al. [21] used the geodesic distance matrix as the supervisor
signal, Roufosse et al. [45] used constraints on functional
maps to optimize their deep networks, but both are based
on the network architecture introduced in [28]. Not rely-
ing on ground-truth correspondences eliminates the need
for labelled data, and Halimi et al. [21] used geodesic dis-
tance matrices for this purpose. However, geodesic dis-
tances are computationally expensive, not stable on degen-
erated meshes, and sensitive to topological noise on the sur-
face. As a solution, we suggest to use heat kernels instead
of geodesic distance matrices for unsupervised learning.

In this paper, we argue that using heat kernels is almost
always beneficial to geodesic distances. Heat kernel are fast
to compute, more stable on noisy meshes, have advanta-
geous properties during optimization [50], and their time
parameter offers control on the amount of localization. A
heat kernel with a large time parameter includes informa-
tion on the entire shape whereas a small time parameter
is limited to only the close vicinity around one point. We
use this property to design a curriculum learning strategy
for the training process and show that it benefits finding a
good optimum. This can be interpreted as a coarse-to-fine
optimization strategy similar to approaches introduced in
[50, 33]. However, in our proposed curriculum learning the
coarse-to-fine optimization is only needed during learning
and not at inference time. This makes the final operations
even more efficient.

Our main contribution can be summarized as i) showing
that heat kernels, which are extremely cheap to compute
compared to geodesic distances, can be used as a super-
vision signal for learning shape correspondence using the



(a) Reference (b) Heat Kernel (c) Geodesic Dist[21] (d) Supervised [28] (e) SGMDS [2] (f) F. Map[37]

Figure 1: Dense correspondence between two shapes optimized only on a single pair of shapes. Since there is no ground-truth
available, our method (1b) and 1c are trained in an unsupervised manner. Moreover, while [21] took 15 minutes to optimize,
our method took just 1 min. We did not employ post-processing method to any of the results.

deep functional framework and produce even better results,
ii) using different time parameters for heat diffusion allows
us to design a curriculum learning approach which boost the
correspondence accuracy on different benchmarks.

The rest of the paper is organized as follows: In the
Sec. 2 we discuss previous approaches and the latest deep
learning based shape correspondence methods. In Sec. 3
we give theoretical background about the shape representa-
tion that we used, heat kernels and (deep) functional maps,
which are fundamental blocks of our method. Sec. 4 ex-
plains how we used heat kernels as a supervisor signal for
training and introduces our curriculum learning approach.
In Sec. 5 we present our results on a variety of benchmarks.

2. Related Work

Finding correspondences between two shapes is often
formulated as a minimization problem using similarity
measures between points. This can be done via match-
ing of point-wise descriptors. These can be hand-crafted
[4, 10, 46, 48, 49] or learned [7, 8, 31, 16, 14]. A similar
direction is to match pair-wise descriptors like distances to
find the optimal matching [13, 34, 50].

Functional maps [37] had a big impact by modelling
the correspondence problem as a mapping between func-
tions on the surface instead of the points of the surface
directly. The main advantages is that using the Laplace-
Beltrami eigenbasis for representing these functions re-
duces the dimensionality of the problem drastically. The
idea of functional maps was refined for various applica-
tions [39, 41, 23, 26, 2, 17, 30, 29, 36] and recently adapted
in deep learning frameworks [28, 21, 45]. Different from
descriptor based learning approaches, the optimization fo-
cuses on functions represented in a limited basis which is
low dimensional compared to the number of vertices. After
obtaining functional map between shapes, correspondences
between vertices can be extracted in various ways [37, 43].

2.1. Deep Learning Based Shape Correspondence

Monti et al. [35] proposed an unified framework for
extending convolutional neural networks on non-euclidean
data such as manifolds and graphs. The proposed network
learns task specific local features. They modelled dense cor-
respondence as a classification task.

Deep Functional Maps [28] introduced a framework for
learning dense shape correspondence between 3D shapes
using deep learning and functional maps. Instead of de-
pending on hand-crafted local descriptors such as SHOT
[47], the optimal descriptor is learned directly during train-
ing. Moreover, the learned descriptors are optimal as
functions for finding functional correspondences between
shapes which can be transformed into point correspon-
dences. Since our method is based on this framework, we
give a more detailed introduction in Sec. 4. The first version
of this network, as it was introduced in [28], is trained using
ground truth correspondences between shapes.

Groueix et al. [19] proposed to learn correspondences
and encoding of 3D shapes together. Their Shape Deforma-
tion Networks take the input shape and try to align a tem-
plate with it. For finding correspondences between pairs
of shapes, they deform the template twice, and extract the
correspondence through the template. This requires a suit-
able template and ground-truth correspondences for train-
ing. However, obtaining ground truth dense correspon-
dences between shapes is expensive, since it requires either
manual labeling via human annotators or special capturing
setups, like [6]. To overcome the need for labeled data, Hal-
imi et al. [21] proposed to use geodesic distance matrices
as supervisor signals during training. They used FM-NET
[28] to obtain a functional map between shapes, and tried to
minimize the geodesic distance distortion between the re-
sulting correspondences instead of relying on ground-truth
error. Our method follows a similar methodology, but we
advocate for heat kernels instead of geodesic distances as
the supervisor signal.

In parallel to [21], Roufosse et al. [45] proposed another



unsupervised learning method for learning dense correspon-
dences using FM-NET. They used the functional maps itself
as the supervisor signal. The idea is based on putting con-
straints on functional maps, such as bijectivity, orthogonal-
ity and Laplacian commutativity which are assumed to be
properties of the optimal map. They predict the functional
map between shapes in both directions (source-to-target and
target-to-source) while preserving the aforementioned prop-
erties in the best possible way.

2.2. Heat Kernels

Heat kernels are a popular tool in shape analysis and
have been utilized for many applications in 3D correspon-
dence [13, 38, 42]. They have also been used as an approx-
imation of adjacency matrices in [22]. Moreover, they are
the basis for the famous Heat Kernel Signature [48] and can
provide a good replacement for Gaussian kernels [50]. It
was also shown in [50] that using heat kernels gives the bis-
tochistic relaxation of the Quadratic Assignment Matching
beneficial properties for optimization. In this paper, we also
use heat kernels as a pair-wise descriptor. We explain how
we calculate heat kernels on shape and how we use them for
training correspondence networks in Sec. 3.2 and Sec. 4.

3. Background
This section will introduce the necessary background

to understand the rest of the paper. We model shapes as
Riemannian 2-manifolds X with a distance function dX :
X × X → R and define π : X → Y as an isometry map
which satisfies

dX (x1, x2) = dY(π(x1), π(x2)) . (1)

for any pair x1, x2 ∈ X . The correspondence problem for
isometric pairs tries to find a map π which fulfills the dis-
tance criterion defined in Eq. (1). The optimization aims to
minimize the distortion error:

L(π) =
∑

x1,x2∈X
(dX (x1, x2)− dY(π(x1), π(x2)))

2
. (2)

Generally, the geodesic distance describes the length of
the shortest path between two vertices on the surface.

3.1. Functional Maps

The idea of functional maps is to replace finding an
point-to-point correspondence π between X → Y with
seeking a functional map T , which represents a correspon-
dence between functions on the surfaces, namely F(X ) →
F(Y) [37]. This can be shown to be a linear mapping and
given the right basis for the function spaces F(X ),F(Y)
formulated as a very low dimensional problem in compari-
son the point-to-point correspondence. The basis proposed
by [37], and chosen by basically every subsequent work, are

the eigenfunctions of the Laplace-Beltrami operator (LBO),
because they are invariant under isometries and frequency
ordered.

[28] combines deep learning methods and functional
maps to solve the dense shape correspondence problem. In-
stead of depending on hand-crafted descriptors as a func-
tions to guide the functional map optimization, SHOT de-
scriptors [49] are processed with a multi-layer perceptron
network, and a new feature representation is learned during
training. In forward time SHOT descriptors are processed
with fully connected layers wherein their dimension is pre-
served. After, they are projected onto the eigenbasis, and
point correspondences are extracted using functional maps.
Finally, the loss is calculated with the aim of optimizing dis-
tortion error (see Eq. 2), and the error is propagated while
training the network.

3.2. Heat Kernels

On a manifold X the heat diffusion equation is

∂u(t, x)

∂t
= ∆Xu(t, x) , (3)

with the initial condition u(0, x) = u0(x) and additional
boundary conditions if applicable. The equation describes
how a given initial heat distribution u0 on X diffuses over
time t. u : [0,∞) × X → R represents the amount of heat
at point x at time t. In more informal terms, we can imagine
putting a heat source onto a point and letting the heat diffuse
over the surface of the shape without anything escaping into
the surrounding space. If a point is far away from the heat
source in terms of geodesic distance, the amount of heat
arriving there in a certain time is normally less than to a
close point. See Fig. 3 for a visualization.

The solution for the heat diffusion equation can be cal-
culated by using the equation below which is linear in the
initial distribution:

u(t, x) =

∫
X
k(t, x, x′)u0(x′)dx′ , (4)

where k : R+ ×X ×X → R is the heat kernel. The values
of k represent the the amount of heat transported from x′ to
x in time t. With the help of Laplace-Beltrami eigendecom-
position heat kernels can be calculated in closed form using
the eigenfunctions and -values:

k(t, x, x′) =

∞∑
k=0

e−λk·tφk(x)φk(x′) (5)

λk, φk denote the k-th LBO eigenvalue and -function. If the
sum is restricted to a fixed k, this equation can be written as
a matrix multiplication.

One caveat of heat kernels is that you need to choose the
time parameter t carefully, if it is too big the heat diffuses
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Figure 2: Overview of our proposed network. The network extracts feature embeddings from their SHOT descriptors.
Afterwards, the features are projected onto the eigenfunctions and, using a linear solver, the functional map and the soft
correspondence map are calculated. The network is trained using the distortion between heat kernels as the supervisor signal.

Figure 3: Visualisation of solutions of heat diffusion equa-
tion with different diffusion times (0.1, 0.03, 0.01, 0.003
from left to right). Yellow are high values, blue is zero.

equally to every point or if its too small numerical issues
arise. One possible option is choosing t by visual inspec-
tion. Another option is looking at the variance of heat val-
ues of some vertices or all vertices to adjust that parameter
automatically without visual inspection.

4. Method
In this section, we will explain how we construct our loss

formulation in an unsupervised way and used heat kernels
for curriculum learning.

4.1. Network loss

We use FM-NET which is based on deep functional
framework introduced in [28]. We use the same architec-
ture with fully-connected residual layers and exponential
linear units (ELU) [12]. See Fig. 2 for an overview. The
input layer takes SHOT descriptors S ∈ RNs×D, where Ns

is the number of vertices and D is the dimension of SHOT
descriptor(352 in our all experiments). All fully-connected
layers preserve the dimension which means the output of
the network is again Ns × D. Next, the learned point de-
scriptors are projected onto the eigenvectors Φ ∈ RE×Ns

(E is number of used eigenvalues) to obtain the final func-
tion coefficient representation of the shape F ∈ RE×D.
The same process is applied to target shape T . T can have a
different number of vertices but its function representation
G ∈ RE×D has the same dimensions as F due to being pro-
jected onto the same number of eigenfunctions. Note that
both shapes are processed with shared layers as in siamese
networks. Afterwards, the functional map C is obtained by
solving the linear equation

G = CF. (6)

By using this functional map formulation instead of find-
ing point-to-point correspondence we find a lower dimen-
sional correspondence between functions of shapes. Instead
of solving a linear equation with dimensionsRN×D, the re-
sult is in RE×D, where N >> E, which is more efficient
since linear solvers generally depend on the Cholesky de-
composition with time complexity O(n3).

However, quantifying the error induced by the functional
map without knowing the ground-truth map is hard. We
convert C into a soft-correspondence map P ∈ RNs×Nt by
transferring indicator functions from S to T using C,

P = |ΨCΦTA|‖·‖ (7)

whereA is the mass matrix of the source shape. Afterwards,
we convert the mapped indicator functions into probability
distributions by takingQ = P ◦P , where ◦ is the Hadamard



product. The ith row of jth column of Q represents the
probability of the ith vertex of the source corresponding to
the jth vertex of the target. We used same unsupervised loss
function as Halimi et al. [21] proposed. It is defined as:

`uns(X ,Y) =
1

|X |2
∥∥DX −QTDYQ

∥∥2
F

(8)

where DX and DY represent the geodesic distance ma-
trices on source and target shape.

Heat Kernel. Instead of using geodesics distance matri-
ces, we used heat kernels as the pairwise supervisor sig-
nal. Preserving the geodesic distances, as it is done in [21],
implies that an isometry is found. We saw in Eq. (5) that
heat kernels can be calculated using the eigenfunctions and
values of the Laplace-Beltrami operator only which implies
that heat kernel are also invariant under isometries. How-
ever, geodesic distances assume large values in points far
away from each other whereas heat kernel achieve their
maximal values on the point itself and its immediate neigh-
borhood. In the case of approximate isometries, due to
noise or different classes, a change on one vertex will af-
fect not only its neighborhood but geodesic distances on the
entire shape. Due to the Frobenius norm in Eq. (8) a single
large error will have a lot more influence on the loss than
a collection of small errors. This will lead to many local
distortions when the isometry assumption is violated, see
Fig. 9. The influence of heat kernels can be controlled via
the diffusion time and for small times the values for fur-
ther points are nearly zero which means large outliers do
not dominate the loss. Additionally, heat kernels are com-
putationally more efficient compared to geodesic distances
since they can be calculated in a closed form, as explained
in Sec. 3.2. The drawback is that the global information of
geodesic distances guides the optimization to the correct lo-
cal optimum whereas more local information is prone to get
stuck in unfortunate local minima. To counteract this be-
havior we introduce a curriculum learning approach in the
next section, and show in Sec. 5 that our results are equal or
better to [21].

4.2. Curriculum Learning

Curriculum learning is a teaching strategy where in ev-
ery step the task to solve gets more challenging with the aim
of solving a complex task in the end. This learning strategy
is used for training deep neural networks and showed ef-
fective performance on various problems [20, 5, 14]. As
discussed in Sec. 3.2 we can control the locality of the heat
diffusion via the diffusion time parameter which determines
how far the heat will spread. For instance, as can be seen
in Fig.3, higher diffusion values lead to a more spread out
and global solution. When the time parameter is small, the
information is very localized and only solutions in which
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Figure 4: Comparison of times for calculating heat kernels
and geodesic distance matrices with varying number of ver-
tices. Please note that the y-axis is in log scale.

neighborhoods are well preserved give a good loss. Un-
fortunately, this makes the loss function harder to optimize
due to stronger local optima. We use this property and start
training with higher diffusion times to get good gradient in-
formation. Then, we gradually decrease the time when we
are already in the vicinity of the optimal solution to get a
more precise placement.

The main idea in curriculum learning settings is that
easy examples are optimized first then harder examples are
added. Hard examples are normally obtained via hard min-
ing which is a time consuming process. However, our
heat kernel formulation becomes naturally more challeng-
ing, and this allows us to control difficulty without any min-
ing process. To create such curriculum learning procedure,
we start training with heat kernels with a high time parame-
ter and decrease the time after some iterations. In our exper-
iments we called this way of training heat decay. Moreover,
since it is fast to calculate heat kernels, this extra computa-
tion step does not lead to longer training times. In contrast,
geodesic distance matrices need to be pre-calculated before
training because of their complexity. We measured calcu-
lation times of heat kernel and geodesic distance matrices
for shapes that contain different number of vertices. As can
be seen in Fig.4, calculating heat kernels is extremely fast
compared to geodesic distances.

Our curriculum learning follows the idea of coarse-to-
fine optimization in spectral space that has also been ex-
plored in [50] and [33]. However, both are non-learning
methods which means they need to run multiple iterations
during inference time. Our method only applies this strat-
egy during training, and the run time of inference does not
suffer from additional calculations.

4.3. Implementation Details

We implemented our framework in Tensorflow [1] based
on the original Deep Functional Maps implementation 1.

1https://github.com/orlitany/DeepFunctionalMaps



For all shapes, we extracted 150 eigenvectors and 352-
dimensional SHOT descriptors. We calculate SHOT de-
scriptors using 10 bins and a radius equal to 5% of total
area of the shape. We pre-calculated all heat kernels using
eigenvectors and eigenvalues before training. If the shapes
are too big for training (~100k) we down-sampled them via
edge contraction [18] to ~7k vertices. However, during test-
ing we used the original resolution. We did not use any
post processing steps for refining the correspondences. We
use the Adam [25] optimizer with an initial learning rate
of 0.001 for all of our training. In our experiments, using
fancy learning rate schedules did not improve our results
significantly.

Further, for choosing the decay values and intervals, we
used a validation set. For calculating validation loss, we
calculated distortion error using heat kernels with initial
time diffusion value. However, on most benchmarks we ob-
served no additional improvements after decaying the time
value twice.

5. Experiments
In this section we show that heat kernels can obtain

a similar or better performance than geodesic distances
while they provide vastly different energy landscape than
geodesic distances. First, we show that our method is work-
ing even under extreme conditions like having only one
training example without ground-truth information. Then,
we try our proposed method on the FAUST Synthetic data
set [6] which is a commonly used data set for evaluating
shape correspondence performance. We also evaluate on
the SHREC 16’ [15, 27] and SHREC 19’ data sets which
include challenges such as partiality, topological noise and
different connectivity respectively.

We use geodesic error curves as the evaluation measure
[24]. This curve contains threshold values on the x-axis
and the percentage of correct correspondences on the y-axis.
For every vertex on the source shape the difference between
the match and the ground-truth match is considered. The
curve plots the percentage of differences which are lower
than the threshold value on the x-axis. The perfect solution
would show a constant curve at 1.

5.1. Single Shape

One of the most extreme case in learning for shape cor-
respondences is not having any training examples or other
priors. We repeat the experiment from Halimi et al. [21]
and calculate a correspondence for a single shape pair. The
result and a comparison can be seen in Fig. 1. We used 150
LBO eigenfuctions, the SHOT descriptor and optimize our
network using heat kernels. Our method achieved compa-
rable, in some parts even better results, than the geodesic
distance version and other methods. Since no ground truth
is available, there is no quantitative evaluation.

(a) Geodesic Distance (b) Heat Kernel

Figure 5: Visualisation of heat kernels and geodesic dis-
tances on FAUST [6] and SHREC 16’ [15] data sets. While
blue represent close areas, yellow represent far away ar-
eas. As can be seen on both shapes, both heat kernel and
geodesic distances provide similar information about close-
ness.

(a) Source Shape (b) Heat (c) Heat /w decay

Figure 6: Visualisation of correspondences on a FAUST [6]
shape. Same colors represent the correspondences. While
the model trained with heat kernel produce very good result,
on the left arm there is a small error. However, the model
with decayed training did not generate a similar error, since
it trained with refined heat kernels also. Please note that,
the person in the shape was not included in the training.

5.2. FAUST - Synthetic data set

The FAUST data set [6] contains 100 shapes which show
10 different people in 10 different poses. The original scans
are registered to a template with 6890 vertices, and we use
these registrations. For training, we used the first eight per-
sons and all of their poses. We used the remaining the two
persons for testing our method. We used 120 LBO eigen-
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Figure 7: Comparison of heat kernel and geodesic distance
matrices on FAUST Synthetic shapes. Training with Heat
Kernels and its decayed version obtains better results than
with the geodesic distance matrix.

functions, and 352-dimensional SHOT descriptor as the in-
put to our model. We evaluate three different unsupervised
signals: the geodesic distance matrix as proposed in Halimi
et al. [21], heat kernel with a fixed temperature of t = 0.1
and decayed heat training with initially t = 0.1 and later
t = 0.01. When we use the geodesic distance matrix, we
train our method with 10k iterations similar to [21]. For
heat kernels, we also trained our model with 10k iterations
and decayed the heat kernel values after 5k iterations.

During training, we shuffled vertices of all shapes be-
cause the ground-truth is one-to-one, and the network could
just learn to return the identity. As can be seen in Fig.7
heat kernels obtained better results compared to geodesic
distances. Our interpretation is that decayed heat kernels
provide different details on each scale which helps the net-
work to refine the solution. Moreover, heat kernels provide
similar distance preservation criteria as geodesic distances.
We visualised heat kernel and geodesic distance on FAUST
shape to validate this claim, which can be seen on Fig.5.

5.3. SHREC 16’ - Partiality

The SHREC 16’ partiality data set [15] contains shapes
from different classes like dogs and humans. The main chal-
lenge of this data set is that the shapes are partial, i.e con-
tain holes or cuts. In our experiment, we choose the dog
class with holes similar to [21]. The data set also has a null
shape for each category and correspondences are calculated
to that shape for evaluation. In the dog category there are
10 training and 26 test shapes. For each shape we extracted
120 LBO eigenbases and SHOT descriptors. We trained
our models using i) fixed heat kernel value (t = 1.0), ii)
dynamic heat kernel value (t = 1.0 then t = 0.1), and iii)
geodesic distance matrix. We used FM-NET with 5 layers
since this data set is small compared to other data sets and
trained the model with only 1k iterations.
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Figure 8: Comparison of heat kernel and geodesic dis-
tance matrices on SHREC’16 benchmark for the dog class.
Shapes contains holes and this lead to partial matching of
deformable shapes. Heat kernel with decayed training ob-
tained comparable results with the geodesic distances.

As illustrated in Fig.8, while fixed heat kernels obtain
lower scores than geodesic distance matrix, heat kernels
with decayed training obtain better scores. In addition to the
correspondence error curve we visualised correspondences
on two challenging poses in Fig.9.

5.4. SHREC 16’ - Topological Noise

The SHREC 16’ - Topological Noise data set [27] con-
tains shapes from KIDS data set [44] with topological merg-
ing. The data set contains 16 training and 9 test shapes. For
training we used 150 LBO eigenbases and the original res-
olution of shapes. During evaluation we looked all pairs of
test shapes and calculate similar plot as in previous sections.
We compare our method with geodesic distances.

The results of our experiment can be seen in Fig. 10.
While decayed heat kernels achieved better results than
geodesic distance with a big error margin, the decayed ver-
sion obtained better result on small error margin. This show
that the model which was trained with decayed heat kernels
was able to find correspondences on finer details while fixed
heat kernels obtained more rough matches.

5.5. SHREC 19’ - Different Connectiviy

The Shrec’19 Matching Humans with Different Connec-
tivity challenge [32] is designed to evaluate correspondence
methods under different density (5k to 50k) and different
meshing distribution (uniform and nonuniform). The chal-
lenge contains different human shapes from variety of data
sets like FAUST [6], TOSCA [9], SCAPE [3].

In our experiments, we remeshed all shapes to have
about 7k vertices due to memory constraints. Afterwards,
we extracted 150 LBO eigenfunctions and 352-dimensional
SHOT descriptors from these resized shapes. We used FM-
NET[28] with 7 residual layers. We trained our models with
10k iterations, and decayed after 5k iterations.



(a) Heat (b) Heat /w decay (c) Geodesic[21]

(d) Heat (e) Heat /w decay (f) Geodesic[21]

Figure 9: Visualisation of some correspondences on SHREC 16 test set. The shape on the left is the source shape. (a) & (d) is
obtained using the model which trained using a fix heat kernel, (b) & (e) with decayed heat kernel. While test shapes are not
complete and in different poses, our method is able to find reasonable correspondences which is similar or better than [21].
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Figure 10: Comparison of Heat Kernels and Geodesic dis-
tance matrix on SHREC’16 topological noise benchmark.
Shapes contains topological artifacts around their body.

During inference we used the original shapes which have
high variety on the number of vertices. In our experiments
we explored three different unsupervised signals: i) fixed
heat kernel value (t = 0.1), ii) dynamic heat kernel value
(t = 0.1 then t = 0.01), and iii) geodesic distance ma-
trix. An overview of the results can be seen in Fig.11. As
depicted in the figure heat kernel with decay obtain better
performance than geodesic distances.

6. Conclusion
We proposed to use heat kernels instead of geodesic dis-

tances for training correspondence networks without any
ground-truth matches in the FM-Net architecture. We show
that heat kernel are an equal but more efficient replacement
for geodesic distances, even though they provide a less op-
timal energy landscape for optimization. Networks trained
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Figure 11: Comparison of Heat Kernels and Geodesic dis-
tance matrix on SHREC’19 different connectivity bench-
mark. Shapes vary in number of vertices and triangles.
In this benchmark fixed heat kernel did not outperform
geodesic distance matrix, but the decay version did.

with heat kernels obtain equal or better results on various
benchmarks while improving run time significantly. More-
over, heat kernel can be recalculated during training, and
we proposed a curriculum learning approach with different
diffusion times that improved correspondence accuracy on
every benchmark.
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