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Figure 1. SAOR capable of predicting the 3D shape of an articulated object category from a single image. Our model is trained on
multiple categories simultaneously using self-supervision on single-view image collections. It can efficiently predict object pose, 3D shape
reconstruction, and unsupervised part-level assignment using only a single forward pass per image at test time in a category-agnostic way.

Abstract

We introduce SAOR, a novel approach for estimating the
3D shape, texture, and viewpoint of an articulated object
from a single image captured in the wild. Unlike prior
approaches that rely on pre-defined category-specific 3D
templates or tailored 3D skeletons, SAOR learns to ar-
ticulate shapes from single-view image collections with a
skeleton-free part-based model without requiring any 3D
object shape priors. To prevent ill-posed solutions, we pro-
pose a cross-instance consistency loss that exploits disen-
tangled object shape deformation and articulation. This is
helped by a new silhouette-based sampling mechanism to
enhance viewpoint diversity during training. Our method
only requires estimated object silhouettes and relative depth
maps from off-the-shelf pre-trained networks during train-
ing. At inference time, given a single-view image, it effi-
ciently outputs an explicit mesh representation. We obtain
improved qualitative and quantitative results on challeng-
ing quadruped animals compared to relevant existing work.

1. Introduction
Considered as one of the first PhD theses in computer vi-
sion, Roberts [48] aimed to reconstruct 3D objects from
single-view images. Despite significant progress in the pre-
ceding sixty years [5, 6, 19, 20], the problem remains very
challenging, especially for highly deformable categories
photographed in the wild, e.g., animals. In contrast, humans
can infer the 3D shape of an object from a single image by
making use of priors about the natural world and familiarity
with the object category present. Some of these natural-
world low-level priors can be explicitly defined (e.g., sym-
metry or smoothness), but manually encoding and utilizing
high-level priors (e.g., 3D category shape templates) for all
categories of interest is not a straightforward task.

Recently, multiple methods have attempted to learn 3D
shape by making use of advances in deep learning and
progress in differentiable rendering [21, 35, 37]. This has
resulted in impressive results for synthetic man-made cate-
gories [7, 21, 59] and humans [12, 36], where full or par-
tial 3D supervision is readily available. However, when
3D supervision is not available, the reconstruction of ar-
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ticulated object classes remains challenging. This is due
to factors such as: (i) methods not modeling articula-
tion [10, 19, 28, 40], (ii) the reliance on category-specific
3D template [25, 27, 71] or manually defined 3D skeleton
supervision [60, 61], or (iii) requiring multi-view training
data such as video [25, 60, 63].

In this paper, we introduce SAOR, a novel self-
supervised Single-view Articulated Object Reconstruction
method that can estimate the 3D shape of articulating ob-
ject categories, e.g., animals. We forgo the need for explicit
3D object shape or skeleton supervision at training time by
making use of the following assumption: objects are made
of parts, and these parts move together. Given a single input
image, our proposed method predicts the 3D shape of the
object and partitions it into parts. It also predicts the trans-
formation for each part and deforms the initially estimated
shape, in a skeleton-free manner, using a linear skinning ap-
proach. We only require easy to obtain information derived
from single-view images during training, e.g., estimated ob-
ject silhouettes and predicted relative depth maps. SAOR is
trained end-to-end, and outputs articulated 3D object shape,
texture, 3D part assignment, and camera viewpoint. Exam-
ple qualitative results can be seen in Fig. 1.

We make the following contributions: (i) We demon-
strate that articulation can be learned using image-based
self-supervision alone via our new part-based SAOR ap-
proach which is trained on multiple categories simultane-
ously without requiring any 3D template or skeleton prior.
(ii) As estimating the 3D shape of an articulated object from
a single image is an under-constrained problem, we intro-
duce a cross-instance swap consistency loss that leverages
our disentanglement of shape deformation and articulation,
in addition to a new silhouette-based sampling mechanism,
that enhances the diversity of object viewpoints sampled
during training. (iii) We illustrate the effectiveness of our
approach on a diverse set of over 100 challenging categories
covering quadrupeds and bipeds, and present quantitative
results where we outperform existing methods that do not
use explicit 3D supervision. Code will be made available.

2. Related Work
Here we discuss works that attempt to estimate the 3D shape
of an object in a single image using image-based 2D su-
pervision during training. We do not focus on works that
require explicit 3D supervision [7, 21, 38, 59] or multi-
view images for training [18, 34, 57, 68]. We also do not
cover methods that only reconstruct single object instances
[39, 43, 44] or models for multi-object scenes [42]. For a
recent overview of related topics, we refer readers to [55].
Deformable 3D Models. The pioneering work of Blanz
and Vetter [5] marked the introduction of deformable mod-
els to represent the 3D shape of an object category using
vector spaces. By using 3D scans of human faces, they

created a deformable model which captured inter-subject
shape variation and demonstrated the ability to reconstruct
3D faces from unseen single-view images. This concept
was later expanded to more complex shapes such as the hu-
man body [1, 36], hands [22, 53], and animals [72].

Recent work has combined deep learning with 3D de-
formable models [4, 36, 49, 71] to predict the shape of
articulated objects from single-view input images. Given
an input image, these methods estimate the parameters of
a known deformable 3D model and render the object us-
ing the predicted camera viewpoint. Although this line of
work has led to impressive results for the human body [36],
the results for deformable animal categories are lacking
[4, 49, 71]. This is because popular human deformable
models, e.g., SMPL [36], are constructed using thousands
of high-quality real human 3D scans. In contrast, animal
focused 3D models, e.g., SMAL [71], are generated using
3D scans from a small number of toy animals.

The above models are parameter-efficient due to their
low dimensional shape parameterization, which facilitates
easier optimization. However, beyond common categories,
such as dogs [49], it can be prohibitively difficult to find 3D
scans for each new object category of interest. In this work,
we eliminate the need for prior 3D scans of objects by com-
bining linear vertex deformation with a skeleton-free [33]
linear blend skinning [30] approach to model the 3D shape
of articulated objects using only images at training time.
Unsupervised Learning of 3D Shape. To overcome the
need for large collections of aligned 3D scans from an ob-
ject category of interest, there has been a growing body of
work that attempts to learn 3D shape using images from
only minimal, if any, 3D supervision. The common theme
of these methods is that they treat shape estimation as an
image synthesis task during training while enforcing geo-
metric constraints on the rendering process.

One of the first object-centric deep learning-based meth-
ods to not use dense 3D shape supervision for single-
view reconstruction was CMR [19]. CMR utilizes cam-
era pose supervision estimated from structure from motion,
along with human-provided 2D semantic keypoint supervi-
sion during training and a coarse template mesh initialized
from the keypoints. Subsequently, U-CMR [10] remove
the keypoint supervision by using a multi-camera hypothe-
sis approach which assigns and optimizes multiple cameras
for each instance during training. IMR [56] starts from a
category-level 3D template and learns to estimate shape and
camera viewpoint from images and segmentation masks.
UMR [32] enforces consistency between per-instance un-
supervised 2D part segmentations and 3D shape. They do
not assume access to a 3D shape template (or keypoints) but
instead learn one via iterative training. SMR [15] also uses
object part segmentation from a self-supervised network as
weak supervision. Shelf-SS [67] uses a semi-implicit volu-
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metric representation and obtains consistent multi-view re-
constructions using generative models similar to [14]. Like
us, all of these methods use object silhouettes (i.e., fore-
ground masks) as supervision.

Recently, Unicorn [40] combined curriculum learning
with a cross-instance swap loss to help encourage approx-
imate multi-view consistency across object instances when
training a reconstruction network without silhouettes. Their
swap loss makes use of an online memory bank to select
pairs of images that contain similar shape or texture. The
pairs are restricted to be observed from different estimated
viewpoints. Then a consistency loss is applied which ex-
plicitly forces pairs to share the same shape or texture. In
essence, this is a form of weak multi-view supervision un-
der the assumption that the shape of the object pair are the
same. However, this assumption breaks down for articulat-
ing objects. Inspired by this, we propose a more efficient
and effective swap loss designed for articulating objects.

There are also approaches that predict a mapping from
image pixels to the surface of a 3D object template as in [12,
41]. CSM [28] eliminates the need for large-scale 2D to
3D surface annotations via an unsupervised 2D to 3D cycle
consistency loss. The goal of their loss is to minimize the
discrepancy between a pixel location and a corresponding
3D surface point that is reprojection based on the estimated
camera viewpoint. In contrast, we do not require any 3D
templates or manually defined 2D annotations.
Learning Articulated 3D Shape. Most natural object cat-
egories are non-rigid and can thus exhibit some form of ar-
ticulation. This natural shape variation between individual
object instances violates the simplifying assumptions made
by approaches that do not attempt to model articulation.

A-CSM [27] extends CSM [28] by making the learned
mapping articulation aware. Given a 3D template of the ob-
ject category, they first manually define the parts of the ob-
ject category and a hierarchy between the parts. Then, given
an input image, they predict transformation parameters for
each part so they can articulate the initial 3D template be-
fore calculating the mapping between the 3D template and
the input pixels. Recently [52] show that A-CSM can be
trained with noisy keypoint labels. Instead of manually
defining parts, [25] initialize sparse handling points, pre-
dict displacements for these points, and articulate the shape
using differentiable Laplacian deformation. However, each
of these methods requires a pre-defined 3D template of the
object category.

DOVE [60], LASSIE [65], and MagicPony [61] are re-
cent methods that are capable of predicting the 3D geometry
of articulated objects without requiring a 3D category tem-
plate shape. However, they require a predefined category-
level 3D skeleton prior in order to model articulating ob-
ject parts such as legs. While 3D skeletons are easier to
define compared to full 3D shapes, they still need to be

provided for each object category of interest and have to
be tailored to the specifics of each category, e.g., the trunk
of the elephant is not present in other quadrupeds. In the
case of MagicPony [61], in addition to the skeleton and its
connectivity, per-bone articulation constraints are also pro-
vided, which necessitates more manual labor. Additionally,
a single skeleton may be insufficient if there are large shape
changes exhibited across instances of the category.

MagicPony [61] builds on DOVE [60], by removing
the need for explicit video data during training. Inspired
by UMR [32], MagicPony makes use of weak correspon-
dence supervision from a pre-trained self-supervised net-
work to enforce pixel-level consistency between 2D images
and learned 3D shape. LASSIE [65] is another skeleton-
based approach that also uses correspondence information
from self-supervised features during training in addition to
manually pre-defined part primitives. Like us, they model
object parts, but their goal is not to learn a model that can
directly predict shape from a single image at test time. In-
stead, their approach learns instance shape from a set of
images via test-time optimization. In recent work, [66] au-
tomatically extracts the skeleton from a user-defined canon-
ical image, but still requires test-time optimization.

We train with single-view image collections, but there
are also several works that use video as a data source for
modeling articulating objects [31, 60, 63, 64] and other
methods that perform expensive test-time optimization for
fitting or refinement [26, 31, 61, 65, 71]. In contrast, we
only require self-supervision derived from single-view im-
ages and our inference step is performed efficiently via a
single forward pass through a deep network.

3. Method
Our objective is to estimate the shape S, texture T , and
camera pose (i.e., viewpoint) P of an object from an in-
put image I . To accomplish this, we employ a self-
supervised analysis-by-synthesis framework [11, 29] which
reconstructs images using a differentiable rendering opera-
tion, denoted as Î = Π(S, T, P ). The model is optimized
by minimizing the discrepancy between a real image I and
the corresponding rendered one Î . In this section, we de-
scribe how the above quantities are estimated to ensure that
the predicted 3D shape is plausible. An overview of the
generation phase of our method can be seen in Fig. 2

3.1. SAOR Model
Taking inspiration from previous works [19, 40, 67], we ini-
tialize a sphere-shaped mesh with initial vertices S◦ with
fixed connectivity. We then extract a global image repre-
sentation ϕim = fenc(I) ∈ RD using a neural network
encoding function. From this, we utilize several modules,
described below, to predict the shape deformation, articu-
lation, camera viewpoint, and object texture necessary to
generate the final target shape.
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Figure 2. Overview of the generation phase of our SAOR method. Given a single image I as input, we extract a global feature vector ϕim

which is decoded by four separate networks (fd, fa, ft, and fp) to generate a final output image Î . We start by deforming an initial sphere,
articulate it using a part-based linear blend skinning (LBS) operation ξ, texture the mesh, and render it using a differential render Π so that
it is depicted from the same viewpoint as the input image. The parameters for each of the networks presented are trained in an end-to-end
manner using image reconstruction-based self-supervision from multiple different categories using the same model.

Shape. We predict the object shape by deforming and artic-
ulating an initial sphere mesh S◦ = {s◦n}Nn . Here, each of
the N elements of S◦ are 3D coordinates. We estimate the
vertices of the deformed shape using a deformation func-
tion s′i = s◦i + fd(s

◦
i , ϕim), which outputs the displace-

ment vector for the initial points. The deformation func-
tion fd is modeled as a functional field, which is a 3-layer
MLP similar to [40, 42]. As most natural objects exhibit
bilateral symmetry, similar to [19], we only deform the ver-
tices of the zero-centered initial shape that are located on
the positive side of the xy-plane and reflect the deformation
for the vertices on the negative side. We then articulate the
deformed shape using linear skinning [30] in a skeleton-
free manner [33] to obtain the final shape S = ξ(S′, A),
where A is the output of our articulation prediction func-
tion, which we describe in more detail later in Sec. 3.2.
Texture. To predict the texture of the object, we gener-
ate a UV image by transforming the global image feature,
T = ft(ϕim). The function ft is implemented as a convo-
lutional decoder, which maps a one-dimensional input rep-
resentation to a texture map, ft : RD 7→ RH×W×3. This
approach is similar to previous works [40, 42]. However,
unlike existing work [19, 32] that copy the pixel colors of
the input image directly to create a texture image using a
predicted flow field, we predict texture directly. In initial ex-
periments, we found that estimating texture flow only gave
minimal improvements, for an increase in complexity.
Camera Pose. We use Euler angles (azimuth, elevation,
and roll) along with camera translation to predict the camera
pose, similar to previous works [10, 40]. Instead of using
multiple camera hypotheses for each input instance [40], for
each forward pass, or optimizing them for each training in-
stance [10], we use several camera pose predictors, but only
select the one with the highest confidence score for each for-
ward pass, as described in [61]. Specifically, we predict the
camera pose as P ∈ R6 = fp(ϕim). Here, P = rp, tp rep-
resents the predicted camera rotation and translation. This
approach accelerates the training process and reduces mem-
ory requirements since we only need to compute the loss

for one camera in each forward pass. We only incorporate
priors about the ranges of elevation and roll predictions, in-
stead of a strong uniformity constraint on the distribution of
the camera poses as in [40] or fixed elevation as in [61].

3.2. Skeleton-Free Articulation

Many natural world object categories exhibit some form of
articulation, e.g., the legs of an animal. Existing work has
attempted to model this via deformable 3D template mod-
els [49] or by using manually defined category-level skele-
ton priors [60, 61]. However, this assumes one has access to
category-level 3D supervision during training. This would
be difficult to obtain in our setting as we train on over 100
categories simultaneously. We instead propose a skeleton-
free approach by modeling articulation using a part-based
model. Our approach is inspired by [33], who proposed
a related skeleton-free representation for the task of pose
transfer between 3D meshes. However, in our case, we
train a model that can predict parts in an image from self-
supervision alone.

Our core idea is to partition the 3D shape into parts and
deform each part based on predicted transformations. To
achieve this, we predict a part assignment matrix W ∈
RN×K , that represents how likely it is that a vertex belongs
to a particular part, where

∑K
k Wi,k = 1. Here, K is a hy-

perparameter that represents the number of parts and N is
the number of vertices in the mesh. We also predict trans-
formation parameters π = {(zk, rk, tk)}Kk for each part
which consists of scale zk ∈ R3, rotation rk ∈ R3×3, and
translation tk ∈ R3. Each of these parameters are predicted
using different MLPs that take the global image feature ϕim

as input and output fa(S◦, ϕim) = A = {W,π}.
Articulation can be applied to a shape using a set of de-

formations using the linear blend skinning equation [17].
Here, each vertex needs to be associated with deformations
by the skinning weights. In previous work [60, 61, 65],
skinning weights are calculated using a skeleton prior (e.g.,
a set of bones and their connectivity). We instead estimate
skinning weights using a part-based model that does not re-
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Figure 3. Illustration of our articulated swap loss. To calculate
the loss, a swap image Îswi is rendered using a randomly chosen
paired image’s shape S′

j , combined with estimated texture, view-
point, and articulation (Ti, Pi, Ai) from the input image Ii. It en-
sures that 3D predictions are not degenerate and helps disentangle
deformation and articulation.

quire a prior skeleton or any ground truth part segmenta-
tions. We first calculate the centers for each part from the
vertices of the deformed shape s′i ∈ S′,

ck =

∑N
i s′i ∗Wi,k∑N

i Wi,k

. (1)

The final position of a vertex si for the final shape S is
then calculated using the skinning weight of the vertex and
estimated part transformations as

si =

K∑
k

Wi,kzk ⊙ (rk(s
′
i − ck) + tk), (2)

where zk, rk, and tk are the predicted scale, rotation, and
translation parameters corresponding to part k and ⊙ is an
element-wise multiplication. In addition to the reconstruc-
tion losses, we apply regularization on the part assignment
matrix W that encourages the size of each part segment
to be similar for each instance. As each of the above op-
erations are differentiable, articulation is learned via self-
supervised without requiring any 3D template shapes [27],
predefined skeletons [61], or part segmentations [32].

3.3. Swap Loss and Balanced Sampling

One of the hardest challenges in single-view 3D reconstruc-
tion is the tendency to predict degenerate solutions as a re-
sult of the ill-posed nature of the task (i.e., an infinite num-
ber of 3D shapes can explain the same 2D input). Exam-
ples of such failure cases include models predicting flat 2D
textured planes which are visually consistent when viewed
from the same pose as the input image but lack full 3D
shape [40]. To mitigate these issues, and to ensure multi-
view consistency of our 3D reconstructions, we build on
the swap loss idea recently introduced in [40].

To estimate their swap loss, [40] take a pair of images
(Ii, Ij) that depict two different instances of the same ob-
ject category, and estimate their respective shape, texture,

and camera pose, ({Si, Ti, Pi}, {Sj , Tj , Pj}). They then
generate an image Îswi = Π(Sj , Ti, Pi) by swapping the
shape encodings Si and Sj , where Π is a differentiable ren-
derer. Finally, they estimate the appearance loss between Ii
and Îswi which aims to enforce cross-instance consistency.
The intuition here is that the shape from Ij and texture from
Ii should be sufficient to describe the appearance of Ii, even
though Ij is potentially captured from a different viewpoint.

In [40], the shapes Si and Sj should be similar, while
the predicted viewpoints Pi and Pj should be different to
get a useful ‘multi-view’ training signal. To obtain simi-
lar shapes, they store latent shape codes in a memory bank
which is queried online via a nearest neighbor lookup. This
memory bank is updated at each iteration for the selected
shape codes using the current state of the network. More-
over, they limit the search neighborhood based on the pre-
dicted viewpoints to ensure that they obtain some viewpoint
variation, i.e., in [40] the viewpoints Pi and Pj should not
be too similar, or too different. While this results in plausi-
ble predictions for mostly rigid categories such as birds and
cars, for highly articulated animal categories it can led to
degenerate solutions due to more variety in terms of shape
appearance, as can be seen in Fig. 7.
Swap Loss. To address this issue, we introduced a straight-
forward but more effective swap loss that generalizes to
articulated object classes. Our hypothesis is that given a
set of images that contain a variety of viewpoints exhibit-
ing disentangled deformation and articulation, we can use
randomly chosen image pairs to calculate the swap loss.
Since we model the articulation along with the deforma-
tion to obtain the final shape, articulation can be used to
explain the difference between shapes. In our proposed
loss, we swap random deformed shapes S′

i and S′
j from

instances of the same object category, but use the original
estimated articulation Ssw = ξ(S′

j , Ai) and reconstruct the
swap image Îswi = Π(Ssw, Ti, Pi) to calculate the swap
loss Lswap(Ii, Î

sw
i ). Our loss is illustrated in Fig. 3.

Balanced Sampling. For our swap loss to be successful it
requires the selected image pairs to ideally be from differ-
ent viewpoints. To obtain informative image pairs, we pro-
pose an image sampling mechanism which makes use of the
segmentation masks of the input images. Before training,
we cluster predicted segmentation masks of the training im-
ages and then during training we sample images from each
cluster uniformly to form batches. This ensures that each
batch includes the object of interest depicted from different
viewpoints. In Fig. 4 we can see that cluster centers mostly
capture the rough distribution of viewpoints and thus help
stabilize training. As our image pairs (Ii, Ij) are sampled
from within the same batch during training, this results in
varied images from different viewpoints for the swap loss.
Combined, our swap and balanced sampling steps drasti-
cally simplifies the swap loss from [40] and improves recon-
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Figure 4. (Top) Subset of the resulting cluster centers that arise
from clustering the object segmentation masks. (Bottom) Repre-
sentative images from each of the clusters above. We can see that
our simple clustering operation captures the main viewpoint varia-
tions present in the data, e.g., left facing, frontal, right facing, etc.

struction quality and training stability on articulated classes.

3.4. Optimization

Given an input image, I , we reconstruct it as Î using esti-
mated shape, texture, and viewpoint. In addition, we use the
swapped shape to predict another image Îsw and calculate
the swap loss, as discussed in Sec. 3.3. We also use differ-
entiable rendering to obtain a predicted object segmentation
mask and depth derived from the predicted 3D shape, M̂
and D̂ respectively. Our model is trained using a combina-
tion of the following losses,

L = Lappr + Lmask + Ldepth + Lswap + Lreg. (3)

The appearance loss, Lappr(I, Î), is an RGB and per-
ceptual loss [70], Ldepth(D, D̂) is the translation and shift-
invariant depth loss introduced in [45], and Lmask(M, M̂)
estimates silhouette discrepancy. To avoid degenerate so-
lutions, we use Lswap(I, Î

sw) and regularize predictions
using Lreg , which encourages smoothness [8] and normal
consistency on the predicted 3D shape along with a uniform
distribution on the part assignment. While we use predicted
segmentation masks and relative depth during training, at
test time, our model only requires a single image.

3.5. Implementation Details

We employ a ResNet [13] as our global encoder, fenc,
and perform end-to-end training using Adam [23]. Object
masks M and depths D are obtained for training by uti-
lizing off-the-shelf pre-trained networks. To implement all
3D operations in our model we use the Pytorch3D frame-
work [47] using their default mesh rasterization [35] which
is differentiable and enables end-to-end training. Prior to
being passed to the model, images are resized to 128x128
pixels. We disable articulation for the first 100 epochs when
training a model from scratch, and continue training mod-
els for another 100 epochs by enabling deformation and ar-
ticulation jointly. The lightweight design of our proposed
method enables the estimation of the final shape, articu-
lation, texture, and viewpoint in approximately 15 ms per
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Figure 5. Disentanglement of articulation and deformation. On
top, we interpolate articulation latent features between a source
and target image, and on the bottom do the same for shape defor-
mation features. λ = 1 indicates that original features are used
for reconstruction, while λ = 0 indicates the target ones. We can
see that the difference between the reconstructions is explained by
articulation changes between the source and target image pairs.

image. We provide more details regarding losses, hyperpa-
rameters, and optimization in the supplementary material.

4. Experiments
Here we present results on multiple quadruped and biped
animal categories, providing both quantitative and qualita-
tive comparisons to previous work.

4.1. Data and Pre-Processing

For our experiments, we trained two models: SAOR-Bird
and SAOR-101. The bird model is trained from scratch us-
ing the CUB [58] dataset following the original train/test
split. SAOR-101, the general animal model, is trained on
101 animal categories that contain birds, quadrupeds, and
bipeds. This model is first trained using only horse images
from the LSUN [69] dataset with an additional 500 front-
facing horse images from iNaturalist [16], as LSUN mostly
contains side-view images of horses. Then, as in [61], we
finetune the horse model on a new dataset that we collected
from iNaturalist [16] which contains 90k images from 101
different animal classes. In the supplementary material, we
provide more details about the dataset.

For pre-processing, we run a general-purpose animal ob-
ject detector [2] to detect all the animals present in the in-
put images and then filter the detections based on the con-
fidence, size, and location of the bounding box. We then
extract segmentation masks using SAM [24] and estimate
the relative monocular depth using MiDaS [45, 46].

4.2. Quantitative Results

To compare to existing work, we quantitatively evaluate us-
ing the 2D keypoint transfer task, which reflects the qual-
ity of the estimated shape and viewpoint and 3D evalua-
tion which reflects how predicted and ground truth depth is
aligned We report results using the PCK metric with a 0.1
threshold for the keypoint transfer task and normalized L1
Chamfer distance for 3D evaluation.
Birds. Keypoint transfer results on CUB [58] are presented
in Table 1, both for all bird classes and the non-aquatic sub-
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Supervision Method all w/o aqua

∗, @, ,  CMR [19] 54.6 59.1
∗, @ U-CMR [10] 35.9 41.2
♂, @∗,, �∗ DOVE [60] 44.7 51.0
♂, @∗,, † MagicPony [61] 55.5 63.5

@ CMR [19] 25.5 27.7
@, SCOPS∗ UMR [32] 51.2 55.5
None Unicorn [40] 49.0 53.5

@∗, ∗ SAOR-Bird 51.9 57.8

Table 1. Keypoint transfer results on CUB [58] using the PCK
metric with 0.1 threshold (higher is better).  3D template shape,
♂ 3D skeleton,  camera viewpoint,  2D keypoints, @ segmen-
tation mask, � optical flow,  video,  DINO features, SCOPS
part segmentation, and  monocular depth. † also uses additional
video frames from [60]. The initial 3D template in [10, 19] is
derived from 2D keypoints.∗ indicates that the supervision is pre-
dicted, hence it is weak supervision. We obtain the best results for
methods that do not use 3D templates (), skeletons (♂), or extra
data during training in addition to CUB (e.g., [60, 61]).

Supervision Method Horse Cow Sheep

@ Dense-Equi [54] 23.3 20.9 19.6
@,  CSM [28] 31.2 26.3 24.7
@,  A-CSM [27] 32.9 26.3 28.6

None Unicorn [40] 14.9 12.1 11.0
♂, @∗,, † MagicPony [61] 42.9 42.5 26.2

@∗, ∗ SAOR-101 44.9 33.6 29.1

Table 2. Keypoint transfer results for quadruped animals.

set as in [61]. Our method obtains the best results out of
methods that do not use keypoint supervision, 3D object pri-
ors (e.g., 3D templates or skeletons [60, 61]), or additional
data (e.g., [60, 61]).
Quadrupeds. Keypoint transfer results for quadruped an-
imals from the Pascal dataset [9] are presented in Table 2.
As noted earlier, we trained the horse model from scratch,
while the other models were finetuned using data from
iNaturalist [16]. For the Unicorn [40] baseline, we used
their pre-trained model which was also trained on LSUN
horses. For the remaining categories, we also finetuned
their model in a similar fashion to ours. Our method out-
performs CSM [28] and its articulated version A-CSM [27],
which use a 3D template of the object category and 3D part
segmentation for the horse and cow category. Moreover,
our method achieved significantly better scores than Uni-
corn [40], which produces degenerate (i.e., flat) shape pre-
dictions for these classes (see Fig. 7). We visualize some
keypoint transfer results in Fig 6.

We also present 3D evaluation using results using An-
imal3D dataset [62] on a few quadruped categories in Ta-
ble 3. We calculate the normalized L1 Chamfer distance be-
tween ground truth and predictions after running ICP [3] be-

Source Src. Rec. Trg. Rec. KP Transfer

Figure 6. Keypoint transfer results. Our model captures articula-
tion and viewpoint differences between images.

Supervision Method Horse Cow Sheep

None Unicorn [40] 0.091 0.118 0.134
♂, @∗,, † MagicPony [61] 0.046 0.040 -
@∗, ∗ SAOR-101 0.046 0.043 0.045

Table 3. 3D evaluation on the Animal3D dataset [62] using nor-
malized L1 Chamfer error, where lower is better.

Method Horse Cow Sheep Bird

Ours 44.9 33.6 29.1 51.9
Ours w/o depth 42.4 30.1 26.8 49.9
Ours w/o swap 30.8 17.7 18.4 44.5
Ours w/o sampling 27.5 20.1 18.3 38.8
Ours w/o articulation 26.3 19.4 17.9 41.7

Table 4. Keypoint transfer ablation results for SAOR where we
disable individual components to measure their impact.

tween the ground truth and predictions as there is no canon-
ical alignment between methods and ground truth data.
SAOR obtains better results than Unicorn [40] and similar
results to MagicPony [61], while being category agnostic.

4.3. Ablation Experiments

To provide insight into the impact of our proposed model
components, we provide ablation experiments on Pascal for
quadrupeds and on CUB for birds in Table 4. While depth
information helps to improve results, we can see that our ar-
ticulation and swap modules are significantly more impor-
tant. Our model trained without the swap loss obtains rea-
sonable keypoint matching performance for birds but pro-
duces degenerate flat plane-like solutions and fails miser-
ably for quadrupeds. The performance also drops if artic-
ulation is not utilized. This is because we choose random
pairs for the swap loss (unlike [40]’s more expensive pair
selection), and thus only viewpoint changes can be used to
explain the difference between images.

4.4. Qualitative Results
Comparison with Previous Work. We compare SAOR
with methods that do not use any 3D shape priors (i.e., Uni-
corn [40] and UMR [32]) and methods that use a 3D skele-
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Input SAOR-101 Unicorn [40]

SAOR-101 UMR [32]

Figure 7. Comparison of our model to Unicorn [40] and UMR [32]
on horses. Compared to UMR which predicts thin shapes with two
legs, we can reconstruct multi-view consistent results with four
legs. Unicorn fails to produce 3D consistent shapes.

Input SAOR-101 MagicPony [61]

Figure 8. Comparison of our model to MagicPony [61] (without
texture refinement) which uses a category specific skeleton prior
during training. We obtain on-par reconstructions compared to
MagicPony without using any 3D prior on the articulation of the
object class and with a simpler and more efficient architecture.

ton prior (i.e., MagicPony [61]). A comparison of shape
predictions for horses can be seen in Figs. 7 and 8. While
Unicorn produces reasonable reconstructions from the in-
put viewpoint, their predictions are flat from the side. UMR
also predicts thin 3D shapes and does not generate four legs.
Our method reconstructs multi-view consistent 3D shapes,
with prominent four legs. In general, our method produces
similar results to MagicPony. However, MagicPony’s hy-
brid volumetric-mesh representation requires an extra trans-
formation from implicit to explicit representation using [50]
and requires multiple rendering operations to estimate the
final shape. Moreover, the texture predictions of our meth-
ods do not require test-time optimization.
Deformation and Articulation Disentanglement. In
Fig. 5 we illustrate the disentanglement of articulation and
deformation learned by our model. Given two images de-
picting differently articulating instances, we interpolate the
deformation and articulation features between them to vi-
sualize reconstructions. While interpolating the articulation
feature changes the result, changing the deformation feature
does not as the shape difference between both images can

Figure 9. Our model, trained on real-world images, plausibly es-
timates 3D shape and viewpoint from different domains, e.g., car-
toons, line drawings, and paintings.

be explained via articulation changes.
Part Consistency. After finetuning the pre-trained horse
model on different quadruped categories, we observe that
the predicted part assignments stay consistent across cate-
gories, as can be seen in Fig. 1. For instance, although the
shapes of giraffes and elephants are significantly different,
our method is able to assign similar parts to similarly ar-
ticulated areas. Here, each color represents the part that is
predicted with the highest probability from the part assign-
ment matrix W by the articulation network fa.
Out-of-Distribution Images. We illustrate the generaliza-
tion capabilities of our model by predicting 3D shapes from
non-photoreal images, e.g., drawings. Fig. 9 shows that we
can reconstruct plausible shapes and poses from input im-
ages that are very different from the training domain.

4.5. Discussion and Limitations
Although our proposed approach is able to estimate plausi-
ble 3D shapes, the texture predictions are still not fully re-
alistic. This could be improved using test-time refinement
similar to [61] or alternative texture representations. During
training, our method uses estimated silhouettes and relative
depth maps as supervision. Both depth maps and silhouettes
come from a generic pre-trained models [24, 46], hence are
free to acquire. Finally, our method fails to predict accurate
shape if the input images contains unusual viewpoints that
differ significantly from the training images or the object is
not full visible. We present some examples of these failure
cases in the supplementary material.

5. Conclusion
We presented SAOR, a new approach for single-view ar-
ticulated object reconstruction. SAOR is capable of pre-
dicting the 3D shape of articulated object categories with-
out requiring any explicit object-specific 3D information,
e.g., 3D templates or skeletons, at training time. To achieve
this, we learn to segment objects into parts which move to-
gether and propose a new swap-based regularization loss
that improves 3D shape consistency in addition to simplify-
ing training compared to competing methods. These con-
tributions enable us to simultaneously represent over 100
different categories, with diverse shapes, in one model.

Acknowledgments: OMA was in part supported by univer-
sity partner contributions to the Alan Turing Institute.
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A. Additional Results

Qualitative Results. In Fig. A3 and Fig. A4 we present
additional qualitative results on various animal categories
all generate using our SAOR models that are trained on
multiple categories. We provide additional results show-
ing full 360-degree predictions for multiple different cate-
gories on the project website: mehmetaygun.github.
io/saor.
Part Consistency. We also compared SAOR’s surface es-
timates with A-CSM [27] in Fig. A1. Unlike A-CSM, our
method does not use any 3D parts or 3D shape priors but is
still able to capture finer details like discriminating left and
right legs. A-CSM groups left and right legs as a single leg
while their reference 3D template has left and right legs as
a separate entity. Moreover, it mixes left-right consistency
if the viewpoint changes.
Without Depth. We also demonstrate examples from a
variant of our model that was trained without using rela-
tive depth map supervision in Fig. A2. We observe that this
model is still capable of estimating detailed 3D shapes with
accurate viewpoints and similar textures as the full model.
However, the model trained without depth maps tends to
produce wider shapes compared to the full model. Quanti-
tative results for our model without relative depth are avail-
able in Table 2 in the main paper.
Limitations. We showcase some failure cases of our
method in Fig. A5. Our method fails when the animal is
captured from the back, as there is insufficient data avail-
able from that angle in the training sets. Note, methods
such as [61] partially address this by using alternative train-
ing data that includes image sequences from video. Further-
more, when there is also partial visibility (e.g., only the head
is visible), our method produces less meaningful results as
our architecture does not explicitly model occlusion.
Part Ablations. We conducted an additional ablation ex-
periment on the number of parts used for horses. Results
are provided in Table A1. Notably, the PCK scores do not
significantly vary with different numbers of parts. There-
fore, for all other experiments, we used 12 parts.

Number of Parts 6 12 24

PCK 43.8 44.9 44.1

Table A1. Keypoint transfer results on Pascal horses [9] where the
number of parts are varied.

B. Additional Implementation Details

B.1. Data Pre-Processing

When constructing our training datasets, we run a general-
purpose animal detector [2] and eliminate objects if any of
the following criteria hold: i) the confidence of the detection

A-CSM [27]

SAOR-101

Figure A1. Comparison with A-CSM [27] on horses using ex-
ample images from their paper. Even though A-CSM uses a 3D
template with pre-defined fixed parts, it still maps left and right
legs to the same leg in the template and the legs are not consis-
tent across viewpoints (i.e., the part assignment is different in the
top row depending on whether the horse is facing left or right. In
contrast, despite not using any 3D object priors at training time,
our method is much more consistent in its assignment. However,
it does mistake one of the left legs for the horse’s tail in the final
column.

is less than 0.8, ii) the minimum side of the bounding box is
less than 32 pixels, iii) the maximum side of the bounding
box is less than 128 pixels, and iv) there is no margin greater
than 10 pixels on all sides of the bounding box.

We then automatically extract segmentation masks us-
ing Segment Anything Model [24] with the detected bound-
ing box. We automatically estimate the relative monocu-
lar depth using the transformer-based Midas [45, 46], using
their Large DPT model.

To obtain cluster centers for the balanced sampling step
in Section 3.3 in the main paper, we resize the estimated
segmentation masks to 32 × 32, and cluster the 1024-
dimensional vectors into 10 clusters using a Gaussian mix-
ture model in all of our experiments. Visualization of cluster
centers of various animals can be found in Fig. A6.

B.2. Architecture

We use a ResNet-50 [13] as our image encoder fenc in
our CUB[58] experiments and the smaller ResNet-18 in
quadruped animal experiments. This is in contrast to much
larger ViT-based backbones used in other work [61]. We
initialize these encoders from scratch, i.e., no supervised or
self-supervised pre-training is used. The architecture details
are presented in the following tables: deformation network
fd in Table A2, articulation network fa in Table A3, texture
network ft in Table A4, and pose network fp in Table A5.
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Input Pose Reconstruction Parts Input Pose Reconstruction Parts

Figure A2. Comparison of models trained with relative depth supervision (top) and without (bottom). Our model trained without depth
also estimates detailed 3D shapes with the correct viewpoint. However, the 3D predictions are marginally worse as the model without
depth produces slightly wider 3D shapes. Please note that part assignment and pose orientation are different since the two models started
from different random initializations.

Layer Input Output Dim

Linear (3,512) S◦ lx N × 512
Linear (512,512) ϕim lz 1× 512
2 × Linear (512,128) lx + lz L N × 128
Linear (128,3) l D N × 3

Table A2. Architecture details of our Deformation Net fd.

Layer Input Output Dim

Linear (3,512) S◦ lx N × 512
Linear (512,512) ϕim lz 1× 512
Linear (512,128) lx + lz L N × 128
Linear (128,128) L L N × 128
Linear (128,K) L W N ×K
K × Linear (512, 9) ϕenc π K × 9

Table A3. Architecture details of our Articulation Net fa. K is
the number of parts and N is the number of vertices, π is camera
parameters.

Layer Input Output Dim

Linear (512,512) ϕim L 512× 1× 1
Upsample L Lup 512× 4× 4
Upsample + Conv2D Lup Lup 256× 8× 8
Upsample + Conv2D Lup Lup 128× 16× 16
Upsample + Conv2D Lup Lup 64× 32× 32
Upsample + Conv2D Lup Lup 32× 64× 64
Upsample + Conv2D Lup Lup 16× 128× 128
Conv2D Lup T 3× 128× 128

Table A4. Architecture details of our Texture Net ft.

B.3. 3D Evaluation Details

For 3D quantitative evaluation, we used the Animal3D
dataset [62]. The dataset includes pairs of input images with

Layer Input Output Dim

1 × Linear (512,128) ϕim L 128
C × Linear (128,6) L rp, tp 128
Linear (128,C) L α 128

Table A5. Architecture details of our Pose Net fp. C is the number
of cameras, and α are the associated scores for each camera [61].

their corresponding 3D models, which are estimated via op-
timizing the SMAL [72] model. Moreover, the 3D models
are manually verified to eliminate poorly estimated shapes.
We used the test split of the dataset for the horse, cow, and
sheep categories. As there is no global pose alignment be-
tween our predictions and the dataset, we run the ICP al-
gorithm to align them. We optimize rotation, R ∈ R3,
translation T ∈ R3, and global scale s ∈ R1 with the
Adam optimizer [23] using L1 norm as our alignment ob-
jective. We also follow the same alignment steps for the
MagicPony [61] baseline.

B.4. Training Losses

Here we describe the training losses from the main paper
in more detail. The appearance loss is a combination of
an RGB and perceptual loss [70]. Lappr = λrgbLrgb +
λpercpLpercp. These terms are defined below,

Lrgb = ||
∑
i,j

Ii,j − Îi,j ||2, (4)

Lpercp = ||ϕp(Ii,j)− ϕp(Ii,j)||2, (5)

where ϕp is a function that extracts features from different
layers of the VGG-16 [51] network.

The mask loss is calculated based on the difference be-
tween the automatically generated ground truth segmenta-
tion mask M and the estimated mask M̂ derived from our
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Figure A3. Additional qualitative results for our SAOR approach on various different animal categories. Note that the part assignment
displays the part with the highest probability for each vertex, but in practice, the articulation for each vertex can be explained by a linear
combination of multiple parts.
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Figure A4. Additional qualitative results for our SAOR approach on various different animal categories. Note that the part assignment
displays the part with the highest probability for each vertex, but in practice, the articulation for each vertex can be explained by a linear
combination of multiple parts.
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Input Pose Reconstruction Parts MagicPony [61]

Figure A5. Failure cases on cows. On the left we see SAOR-101 predictions (estimated pose, original viewpoint reconstruction, different
view, and estimated parts). On the right we display MagicPony [61] (original viewpoint reconstruction, textured reconstruction, different
view). When the pose is very different than the typical ones present in the training set (top) or there is too much occlusion (bottom) our
method fails to produce a sensible shape estimate. For the first example, MagicPony fails to capture the articulation of the head, and for
the second occluded example it predicts an average template shape with the wrong pose.

Figure A6. Visualization of the cluster centers obtained from estimated silhouettes of various animal categories used in our balanced
sampling. We observe that these cluster centers broadly capture the dominant viewpoints of each object category. Top to bottom: horse,
giraffe, elephant, zebra, and bird.

predicted 3D shape,

Lmask = λmask

∑
i,j

||Mi,j − M̂i,j ||2. (6)

Likewise, the depth loss is computed using the automati-
cally generated relative depth D and the estimated depth D̂
from the predicted shape,

Ldepth = λdepth

∑
i,j

||Di,j − D̂i,j ||2. (7)

Our swap loss is a combination of the RGB and mask
loss between the input image I and swapped image Isw,

Lswap = λswap [Lmask(I, I
sw) + Lrgb(I, I

sw)] . (8)

Finally, we also employ part regularization on the part
assignment matrix W to encourage equal-sized parts,

Lpart = λpart

K∑
k

(
(

N∑
i

Wi,k)−N/K

)2

(9)
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where N is the number of vertices in the mesh and K is the
number of parts. We also apply 3D regularization on the 3D
shape, Lsmooth = λsmooth

∑
LS, where L is the laplacian

of shape S and Lnormal which is defined below,

Lnormal = λnormal

∑
ni,nj∈Ω

1− ni.nj

||ni||.||nj||
(10)

Here, ni, nj are normals of neighbor faces. And the
smoothness regularization is defined as λsmoothLsmooth =
||LV ||, where L is the Laplacian operator on the vertices.
The final regularization term is defined as,

Lreg = λpartLpart + λsmoothLsmooth + λnormalLnormal.
(11)

We note the weights used in our experiments for each loss
in Table A6.

B.5. Training

In our experiments, we trained two different models:
SAOR-101 and SAOR-Birds. The bird model is trained
from scratch on CUB [58] for 500 epochs. In the first 100
epochs we only learn deformation, and then enable articu-
lation afterwards.

The SAOR-101 model is trained in two steps. We first
train the model using only Horse data from LSUN [69] then
finetune it on all 101 animal categories downloaded from
the iNaturalist website [16]. In a similar fashion to the
SAOR-Birds model, we only learn deformation in the first
100 epochs, then allow articulation for about 300 epochs on
horse data. Finally, fine-tune the model on all categories on
iNaturalist data for 150 epochs. We utilize Adam [23] with
a fixed learning rate for optimizing our networks. We note
the hyperparameters used in Table A6.

Our simplified swap loss leads to easy hyper-parameter
selection compared to Unicorn [40]. For instance, in their
swap loss term, the following parameters need to be de-
cided: i) feature bank size, ii) minimum and maximum
viewpoint difference, and iii) number of bins to divide sam-
ples in the feature bank depending on the viewpoint. More-
over, they need to do multistage training where they in-
crease the latent dimensions for the shape and texture codes
to obtain similar shapes during training. Here the number
of stages and the dimension of latent codes in each stage
are also hyperparameters. In our method, we eliminated all
of these hyperparameters. Moreover, as we do not use all
of the hypotheses cameras to estimate loss during a forward
pass as in [61] and as a result of our simplified swap loss,
model training is six times faster than Unicorn, as they use
six cameras during training, for the same number of epochs.

Parameter Value/Range

Optimization
Optimizer Adam
Learning Rate 1e-4
Batch Size 96
Epochs 500
Image Size 128 × 128

Mesh
Number of Vertices 2562
Number of Faces 5120
UV Image Size 64 × 128 × 3
Number of Parts 12
Initial Position (0,0,0)

Camera
Translation Range (-0.5, 0.5)
Azim Range (-180,180)
Elev Range (-15, 30)
Roll Range (-30, 30)
FOV 30
Number of Cameras 4

Loss Weights
λrgb 1
λpercp 10
λmask 1
λdepth 1
λswap 1
λsmooth 0.1
λnormal 0.1
λpart 1
λpose 0.05

Table A6. Training hyperparameters.
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