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Abstract

The world exists in three dimensions, yet when 3D objects are projected onto a

2D image plane, vital spatial information is inevitably lost. Despite this limitation,

humans possess a remarkable ability to infer 3D structure from 2D images, enabling

us to navigate and interact seamlessly with our surroundings. In contrast, modern

computer vision algorithms primarily interpret the world as a collection of 2D patterns

(e.g. bag of 2D visual words), leading to several shortcomings: poor generalization

to novel environments, difficulty in learning object categories from limited training

samples, and vulnerability to adversarial attacks, where minor texture modifications

can drastically degrade performance.

This thesis aims to reduce the gap between human and machine perception by im-

proving the extraction of 3D object shape information from 2D images and leveraging

3D understanding to enhance high-level vision tasks such as semantic correspondence

estimation. To do so, we take inspiration from developmental psychology which sug-

gests that human vision is strongly driven by shape cues, particularly in early cognitive

development. However, with the rise of deep learning, classical approaches that ex-

plicitly encode shape, such as pictorial structure models and deformable part-based

models, have largely been abandoned in favor of end-to-end learning paradigms.

In this thesis, we first assess the capabilities of unsupervised computer vision mod-

els on semantic correspondence tasks using a novel evaluation protocol that jointly

captures semantic and geometric understanding. Our findings reveal that current mod-

els fall short on this task, and we proposed a new method that improved the state-of-

the-art performance at the time, demonstrating significant advancements over existing

approaches. Next, we introduce a method for extracting the 3D shape of articulated ob-

jects, such as animals, from single-view images without requiring manual supervision.

Finally, we present a novel approach to integrate 3D priors into self-supervised learn-

ing frameworks, improving robustness for semantic tasks such as image recognition

while maintaining accuracy. By emphasizing the role of 3D shape in visual learning,

this work introduces new methods that enhance the robustness of machine perception,

advancing it toward human-level competence.
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Lay Summary

We live in a 3D world, but when we take a photo, it becomes flat and loses important

details about depth and shape. People are naturally good at understanding what objects

look like in 3D, even from a flat image. However, computers struggle with this. Most

computer vision systems focus on patterns and textures instead of shapes, which can

cause problems. They often fail in new situations, require many examples to learn

from, and can be tricked by small changes to images.

This thesis introduces new methods to help computers see and understand shapes

more like people do. Studies show that humans use shapes to recognize objects, es-

pecially as children. But modern computer models tend to ignore shape information

in favor of quicker, less effective methods. First, we tested how well current com-

puter vision models understand object shapes and meaning using a new method for

matching parts on different object instances. The results showed that these systems

had trouble with the task. To fix this, we created a better method that made significant

improvements. Next, we developed a tool that can estimate the 3D shape of animals

and other flexible objects from just one photo, without needing extra labeled data (e.g.,

other images or different sensors). Finally, we added 3D shape knowledge to computer

learning systems, making them more accurate and harder to trick.

By teaching computers to understand shapes more like humans, this thesis aims

to develop methods that will result in future smarter and safer artificial intelligence

systems that perform better in the real world.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The world is 3D, and there is a loss in information when we project objects and scenes

from our 3D world to the 2D image plane. However, humans have a remarkable ca-

pability of perceiving useful 3D information such as depth, shape, size, and spatial

relationships between objects (Palmer, 1999; Bruce et al., 2014) and are able to inter-

act and navigate by acting on this extracted knowledge. In contrast, current computer

vision algorithms have a hard time inferring necessary 3D knowledge from single 2D

observations alone. As multiple different 3D scenes can create the same observation

in 2D, capturing the 3D shape or properties of objects or scenes from single-view 2D

images is a highly ill-posed problem due to this ambiguity.

The role of shape and structure in visual recognition has a long and distinguished

history. In the context of computer vision, shape typically refers to the geometric

outline or silhouette of an object, capturing its spatial extent and boundaries, while

structure encompasses the spatial arrangement and relationships between an object’s

parts or components. Early approaches, such as pictorial structure models (Fischler and

Elschlager, 1973), constellation models (Weber et al., 2000; Fergus et al., 2003), and,

at their peak, the widely adopted deformable parts-based models (Felzenszwalb et al.,

2010), all leveraged shape as a fundamental cue for object representation. Yet, with

the advent of deep learning, these models have largely fallen out of favor. This shift is

particularly striking given compelling evidence from developmental psychology that

the human visual system is strongly attuned to shape, especially in the early stages of

cognitive development (Landau et al., 1988; Gershkoff-Stowe and Smith, 2004).

In contrast, current state-of-the-art computational visual understanding systems

1



2 Chapter 1. Introduction

(i.e., deep neural networks) tend to rely more heavily on texture cues than on shape

information, as demonstrated in Geirhos et al. (2019, 2021). These models effectively

perceive the world as a collection of 2D image patches rather than as structured ob-

jects with inherent spatial relationships (Brendel and Bethge, 2019). However, this

reliance on texture comes at a cost. Deep networks struggle to generalize to novel en-

vironments (Beery et al., 2018), perform poorly on object categories in the long tail of

the distribution due to limited training samples (Van Horn and Perona, 2017), and are

remarkably vulnerable to adversarial perturbations, where subtle texture modifications

can drastically alter predictions (Goodfellow et al., 2015).

Inspired by Turing’s vision of machine intelligence as a learning process akin to

human development (Turing and Haugeland, 1950), we argue that enabling models

to reason about the 3D shape of objects is a crucial step toward creating artificial vi-

sual agents capable of self-supervised learning in embodied settings. Self-supervised

learning is a learning paradigm in which models generate supervisory signals from the

data itself—typically by solving pretext tasks such as predicting missing parts of an

image or aligning different views—without relying on manual labels. Unlike unsuper-

vised learning, which focuses on discovering patterns or structures (e.g., clustering)

without explicit targets, self-supervised learning defines specific objectives that guide

representation learning, often leading to features that are more useful for downstream

tasks.

Humans can effortlessly infer the approximate 3D structure of an object from a sin-

gle view, can establish part-level and local correspondences across different instances

of a category, and can leverage shape priors for semantic association across a wide

range of tasks. For example, fine-grained visual recognition, such as distinguishing

between closely related animal species, can potentially be enhanced by incorporating

3D shape information, as illustrated in Figure 1.1. Moreover, state-of-the-art methods

for face recognition, which is one of the most fine-grained tasks, also leverage shape

information, such as surface geometry and depth (Apple, 2024). In this context, depth

refers to the distance of points on the face surface from the camera, often represented

as a depth map. Unless stated otherwise, we use relative depth throughout this thesis,

which captures the depth relationships between different regions of an object rather

than their absolute distance from the camera.

In this thesis, we investigate the interplay between shape and semantics, develop

methods for improving single-view 3D shape estimation, and leverage 3D represen-

tations to enhance high-level visual understanding. As we aim to explore the intri-



1.1. Motivation and Objectives 3

Figure 1.1. Can you identify the characteristic feature that differentiates these two Gazelle

species? We can mentally ‘align’ these two animals in 3D and compare their differences.

However, current general-purpose computer vision algorithms for visual recognition lack the

ability to reason about the 3D shapes of objects and require large amounts of training data to

distinguish fine-grained categories. In this thesis, we aim to enhance computer vision models

with 3D geometric reasoning capabilities to improve their semantic understanding of the world.

For interested readers, the Thomson’s gazelle (left) has a black textured area in the middle of

their body, compared to the Grant’s gazelle (right) who do not.

cate relationship between 3D shape information and semantics in computer vision,

we focus on the problem of semantic correspondence as a key proxy task. Semantic

correspondence entails establishing dense or sparse correspondences between seman-

tically similar regions across different images containing two different instances of the

same object category, even when there are significant variations in appearance, pose,

or background. In contrast to traditional geometric correspondence, which relies on

low-level features such as edges and textures, semantic correspondence aligns regions

based on their meaning and function, capturing higher-level relationships. This makes

it a powerful tool for studying the interplay between shape and semantics in computer

vision. By analyzing correspondences across a diverse range of objects and scenes,

we can evaluate how effectively a model captures structural and functional similar-

ities, even in the presence of intra-class variations. This is especially important for

tasks like object recognition, scene understanding, and image synthesis, where an ac-

curate representation of both shape and semantics is essential for reliable predictions

and meaningful generalization.

Despite being a fundamental and intuitive task for humans, semantic correspon-

dence has often been overlooked in the computer vision community compared to tasks

like object detection, image segmentation, and visual categorization. Establishing

https://www.flickr.com/photos/tariquesani/4922411549/sizes/l
https://animalia.us-east-1.linodeobjects.com/animals/photos/full/1.25x1/tan-2-grants-gazelle.jpg


4 Chapter 1. Introduction

meaningful correspondences between semantically similar regions across images is

crucial for understanding how models capture high-level structural and functional re-

lationships. While some datasets have been created for semantic correspondence tasks

(Ham et al., 2017; Min et al., 2019b), a benchmarking framework with a standard-

ized protocol and diagnostic tools has been lacking, hindering our ability to carefully

compare methods and assess progress in a systematic manner. Developing robust and

detailed benchmarks is essential for advancing the field, as they provide a clear and

consistent means of measuring a model’s effectiveness in tackling a given task.

In a manner analogous to Winston Churchill’s famous quote, “Democracy is the

worst form of government, except for all the others,” benchmarks may be the least

optimal way to measure progress in machine learning and computer vision, except for

all other alternatives (Everingham et al., 2015). Nevertheless, benchmarks like Pascal

(Everingham et al., 2015) and ImageNet (Deng et al., 2009) have played a pivotal role

in advancing computer vision. Standardized datasets and benchmarking protocols have

enabled fair and transparent evaluation of competing approaches, providing definitive

insights into what truly works. For example, the seminal study comparing various

local visual descriptors (Mikolajczyk and Schmid, 2005) solidified SIFT (Lowe, 1999)

as the dominant choice for visual recognition tasks for over a decade. Furthermore, the

ImageNet (Deng et al., 2009) benchmark ushered in a new era in artificial intelligence,

spurred by the remarkable success of AlexNet (Krizhevsky et al., 2012). The impact

of these benchmarks stems not only from the datasets themselves, but also from their

carefully designed evaluation protocols and metrics, which have provided a common

ground for measuring progress and fostering innovation.

Many computer vision benchmarks, including the aforementioned, typically rely

on a single summary metric to compare different methods. However, a deeper under-

standing of their limitations and the improvements introduced by newer approaches is

paramount for future progress. To address this, several studies have proposed diagnos-

tic tools and frameworks to assess methods across a broad range of challenges (Hoiem

et al., 2012; Russakovsky et al., 2013; Everingham et al., 2015; Zhang et al., 2016b;

Sigurdsson et al., 2017; Ruggero Ronchi and Perona, 2017; Alwassel et al., 2018).

Inspired by these benchmarking protocol works that offer a more nuanced analysis

of competing approaches, the first part of this thesis aims to develop a more compre-

hensive evaluation framework with a standardized evaluation protocol for comparing

semantic correspondence methods.

In addition to advancing our understanding of the relationship between 3D shape
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and semantics, we aim to enhance the capabilities of computer vision systems in ex-

tracting 3D information from single-view images. One of the earliest and most foun-

dational works in this domain, Roberts’ PhD thesis (Roberts, 1963), focused on the

estimation of 3D shape from a single image. Despite considerable progress over the

past six decades (Blanz and Vetter, 1999; Cashman and Fitzgibbon, 2012; Kar et al.,

2015; Kanazawa et al., 2018b), this problem remains inherently challenging, primarily

due to its ill-posed nature. In contrast, humans can effortlessly infer 3D shape from a

single image (Bruce et al., 2014), relying on a combination of prior knowledge about

the natural world and familiarity with the object’s category. While some low-level

priors, such as symmetry or smoothness, can be explicitly modeled, the task of man-

ually encoding and effectively utilizing high-level priors such as 3D shape templates

for various object categories remains a formidable challenge. Recent advances in deep

learning and differentiable rendering have led to multiple methods for estimating 3D

shape from 2D images (Loper and Black, 2014; Kato et al., 2018; Liu et al., 2019).

These approaches have yielded impressive results for synthetic, man-made categories

(Choy et al., 2016b; Kato et al., 2018; Wang et al., 2018) and human models (Loper

et al., 2015; Güler et al., 2018), where full or partial 3D supervision is readily available.

However, when 3D supervision is unavailable, reconstructing objects remains chal-

lenging. To address this issue in the absence of 3D supervision, various approaches

have relied on category-specific 3D templates (Kokkinos and Kokkinos, 2021a; Kulka-

rni et al., 2020; Zuffi et al., 2019) or leveraged multi-view training data, such as videos

(Wu et al., 2023a; Kokkinos and Kokkinos, 2021a; Yang et al., 2021a). Yet, these ap-

proaches limit the generalizability of the methods, as template-based techniques cannot

extend to a multi-category setting, and multi-view data is often not available for many

object classes. While some methods have gone beyond this by using single-view im-

age collections, they have constrained them to a single category and have not modeled

articulation (Kanazawa et al., 2018b; Kulkarni et al., 2019a; Goel et al., 2020; Mon-

nier et al., 2022). Not modeling articulation limits methods to work only with rigid

categories, such as man-made objects, and fails to address intra-instance variations in

image collections, which makes scaling the methods for multi-category settings very

challenging.

In this thesis, we aim to develop a more general 3D reconstruction method specif-

ically designed for animals. We choose animals due to the difficulty of collecting

multi-view or 3D data for them, their highly articulated structures, and the signifi-

cant shape variability across and within species. Our goal is to create a method that
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does not rely on 3D templates, as we seek to estimate the 3D shape of multiple object

categories within a single model. This model should be capable of handling articula-

tion and should not require multi-view or 3D data during training. Instead, it should

use only single-view image collections, which are often gathered in an automatic way

from the web and might include noise such as low-quality or blurry images, irrelevant

content, occlusions, and background clutter. Unlike some recent works (Wu et al.,

2023a,b; Li et al., 2024) that rely on 3D skeleton priors, we aim to avoid this require-

ment, resulting in a model capable of estimating the 3D shape of animals with varying

bone topologies, such as bipeds and quadrupeds in a unified manner.

In addition to improving the estimation of 3D structures in the world, utilizing these

3D cues for high-level semantic understanding is also crucial for developing agents ca-

pable of understanding and acting in the open world. When we observe humans, the

visual stimuli processed by a binocular, actively moving, human observer provides

direct information about the 3D world around them (Gibson, 1950). As a result, hu-

mans have a remarkable ability to perceive useful 3D shape cues, enabling them to

interact and navigate adeptly in complex environments. Most impressively, the power

of the human visual system is not understood to be a resulting property of supervised

learning, i.e., it has developed thanks largely to ‘self-supervision’ (Smith and Gasser,

2005). Moreover, it is well established, especially in the early years of cognitive devel-

opment, that infants more heavily rely on shape cues compared to other cues such as

texture during early category learning (Landau et al., 1988; Spelke, 1990; Spelke and

Kinzler, 2007).

These findings suggest two ways to enhance artificial vision systems: (i) by de-

veloping models that can learn from data in an unsupervised manner and (ii) by en-

couraging models to better utilize shape information. Fortunately, significant progress

has been made in the first area, as we now have techniques that generate effective

visual representations through self-supervision alone, such as e.g., (Wu et al., 2018;

Chen et al., 2020b; Bao et al., 2022; He et al., 2022; Oquab et al., 2024). However,

relatively less research has focused on improving models’ ability to leverage shape

information. While there are methods for extracting shape-related information, like

depth, using self-supervision from image pairs (Godard et al., 2017) or video sequences

(Zhou et al., 2017), these approaches often rely on strong assumptions about the scenes

they are trained on (e.g., smooth camera motion, static scenes, limited visual diversity,

etc.). As a result, the most effective depth prediction methods today still require ex-

plicit depth supervision during training (Ranftl et al., 2022; Bochkovskii et al., 2024).
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Furthermore, even with depth supervision, leveraging it to improve performance on

other tasks remains non-trivial (Zamir et al., 2018; Standley et al., 2020). Meanwhile,

emerging evidence suggests that solving a geometric task could indeed aid semantic

tasks (Lao et al., 2024).

Inspired by previous self-supervised learning methods (Zhang et al., 2016a; Pathak

et al., 2016; Gidaris et al., 2018; Noroozi et al., 2017) that use proxy tasks to promote

the learning of useful information, we posit that the single-view 3D reconstruction

problem can be leveraged to encourage the use of shape information, thereby enrich-

ing the visual representations of already trained self-supervised networks. Estimating

the 3D shape of an object from a single-view image requires the model to encode

shape-related cues, which can enhance the shape-awareness of the underlying visual

representation. However, understanding shape alone is insufficient for many vision-

related tasks. For instance, while global shape information may help distinguish a dog

from a cat, distinguishing between two dogs may require more local, texture-based

details. To harmonize the learning of shape-aware features with the use of texture or

2D-related cues, we propose a new learning framework that combines the single-view

3D reconstruction proxy task with a knowledge distillation framework (Hinton et al.,

2015). We hypothesize that with this framework we can achieve satisfactory perfor-

mance across visual recognition tasks similar to baseline self-supervised models, while

also improving their robustness by promoting shape-bias behavior, which is observed

in humans.

Thesis Statement: This thesis aims to bridge the gap between human and machine

visual understanding by investigating how to effectively extract and utilize 3D shape

information from single-view 2D images to improve semantic tasks such as visual

recognition and semantic correspondence. Specifically, it develops novel methods for

(i) establishing semantic correspondence using unsupervised learning, (ii) reconstruct-

ing 3D shapes of articulated objects like animals without category-specific templates

or multi-view supervision, and (iii) integrating 3D shape priors into self-supervised

learning frameworks to enhance the robustness and shape-awareness of visual repre-

sentations.

1.2 Key Contributions

The main aim of this thesis is to narrow the gap between humans’ and machines’

abilities to extract information from 2D images depicting 3D objects and to leverage
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Figure 1.2. Summary of Contributions: First, we introduce a novel diagnostic framework

to explore the interplay between shape and semantics in computer vision and an unsupervised

approach to enhance semantic correspondence matching, resulting in improved performance.

Next, we present SAOR, a skeleton-free 3D reconstruction model that enables the estimation

of shape, texture, and viewpoint of over one hundred different articulated animal categories

from a single image, without relying on category-specific templates. Finally, we incorporate a

3D prior into a self-supervised learning framework, leveraging 3D representations to enhance

high-level visual understanding and improve the robustness of learned visual representations.

3D information to enhance performance on semantic tasks like visual recognition and

semantic correspondence estimation.

In Chapter 2, we explore semantic correspondence estimation through the lens of

unsupervised learning. We thoroughly evaluate several recently proposed unsupervised

methods across multiple challenging datasets using a standardized evaluation protocol

where we vary factors such as the backbone architecture, the pre-training strategy, and

the pre-training and finetuning datasets. To better understand the failure modes of

these methods, and in order to provide a clearer path for improvement, we provide a

new diagnostic framework along with a new performance metric that is better suited to

the semantic matching task. Finally, we introduce a new unsupervised correspondence

approach which utilizes the strength of pre-trained features while encouraging better

matches during training. This leads to significantly better matching performance than

current state-of-the-art methods, with PCK scores improving by 5–20%.

In Chapter 3, we introduce SAOR, a novel approach for estimating the 3D shape,

texture, and viewpoint of an articulated object from a single image captured in the

wild. Unlike prior approaches that rely on pre-defined category-specific 3D templates

or tailored 3D skeletons, SAOR learns to articulate shapes from single-view image col-

lections with a skeleton-free part-based model without requiring any 3D object shape

priors. To prevent ill-posed solutions, we propose a cross-instance consistency loss
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that exploits disentangled object shape deformation and articulation. This is helped

by a new silhouette-based sampling mechanism to enhance viewpoint diversity dur-

ing training. Our method only requires estimated object silhouettes and relative depth

maps from off-the-shelf pre-trained networks during training. At inference time, given

a single-view image, it efficiently outputs an explicit mesh representation. We ob-

tained improved qualitative and quantitative results on challenging quadruped animals

compared to existing work at the time of writing.

In Chapter 4, we present a new way to incorporate a 3D prior into a self-supervised

learning framework. Learning robust and effective representations of visual data is a

fundamental task in computer vision. Traditionally, this is achieved by training models

with labeled data which can be expensive to obtain. Self-supervised learning attempts

to circumvent the requirement for labeled data by learning representations from raw

unlabeled visual data alone. However, unlike humans who can extract rich 3D infor-

mation from their binocular vision and through motion, the majority of current self-

supervised methods are tasked with learning from monocular 2D image collections.

This is noteworthy as it has been demonstrated that shape-centric visual processing is

more robust compared to texture-biased automated methods. Inspired by this, we pro-

pose a new approach for strengthening existing self-supervised methods by explicitly

enforcing a strong 3D structural prior directly into the model during training. Through

experiments, across a range of datasets, we demonstrate that our resulting 3D aware

representations are more robust compared to conventional self-supervised baselines.

Conclusion: This thesis demonstrates that incorporating 3D geometric reasoning sig-

nificantly enhances computer vision models’ capacity to understand complex visual

scenes. By establishing the relationship between shape and semantics through a proxy

task of semantic correspondence, developing novel methods to estimate the 3D shape

of articulated objects such as animals from single-view images, and integrating 3D

shape priors into a self-supervised learning framework, this work contributes to im-

proving the robustness and accuracy of image recognition models.

A summary of contributions can be seen in Figure 1.2.

1.3 List of Publications

The following papers form the basis of Chapter 2, Chapter 3, and Chapter 4, respec-

tively:
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• Mehmet Aygün and Oisin Mac Aodha.“Demystifying Unsupervised Semantic Cor-

respondence Estimation.” European Conference on Computer Vision, (ECCV). 2022.

• Mehmet Aygün and Oisin Mac Aodha. “SAOR: Single-view Articulated Object

Reconstruction.” Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, (CVPR). 2024.

• Mehmet Aygün, Prithviraj Dhar, Zhicheng Yan, Oisin Mac Aodha, and Rakesh

Ranjan. “Enhancing 2D Representation Learning with a 3D Prior.” Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,

(CVPR Workshops). 2024.

In addition, the following publication, which the author contributed to during his PhD,

is not included in this thesis:

• Danier, Duolikun, Mehmet Aygün, Changjian Li, Hakan Bilen, and Oisin Mac

Aodha. “DepthCues: Evaluating Monocular Depth Perception in Large Vision Mod-

els.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, (CVPR). 2025.



Chapter 2

Demystifying Unsupervised Semantic

Correspondence Estimation

In this chapter, we investigate the relationship between 3D shape information and se-

mantics in computer vision through the lens of semantic correspondence, with a par-

ticular focus on its unsupervised form. Unlike traditional geometric correspondence,

which matches low-level features, semantic correspondence aligns regions based on

their meaning and function, capturing higher-level relationships. Inspired by how hu-

mans learn largely without supervision, we explore how models can achieve similar

capabilities. By analyzing correspondences across varied objects and scenes, we as-

sess how well models capture structural and functional similarities, a crucial aspect for

tasks like object recognition, scene understanding, and image synthesis.

2.1 Introduction

In metaphysics, the correspondence theory of truth posits that without the notion of

correspondence, there cannot be truth (David, 2016). Analogously, correspondence

estimation also holds a very important place as one of the core problems in computer

vision. The ability to reliably obtain accurate pixel-level correspondence underpins

a diverse range of tasks from stereo estimation, optical flow, structure-from-motion,

through to visual tracking. Distinct from these lower-level objectives, semantic corre-

spondence estimation, the task of matching different regions, parts, and landmarks

across distinct object instances, is crucial to developing systems that can perform

higher-level visual reasoning in diverse environments with objects that can vary signif-

icantly in both appearance and the configuration of their constituent parts.

11



12 Chapter 2. Demystifying Unsupervised Semantic Correspondence Estimation

Manually obtaining semantic correspondence supervision, for example in the form

of annotated object landmarks, is an arduous and time consuming task. As a result,

several works have instead attempted to understand to what extent semantic regions

and parts emerge from conventionally trained supervised image classification networks

(Long et al., 2014; Zeiler and Fergus, 2014; Zhou et al., 2016; Gonzalez-Garcia et al.,

2018). These works have shown such semantic information is indeed present in the

representations encoded by these networks, at least to some degree. Recently, a body of

work has emerged that aims to learn semantic correspondence through self-supervision

alone, i.e., without the need for ground truth supervision at training time (Thewlis et al.,

2017b, 2019; Cheng et al., 2021; Karmali et al., 2022).

While we have observed progress on unsupervised semantic correspondence esti-

mation, a number of questions are still underexplored and unanswered. For instance,

it is not clear how well current approaches generalize beyond more simplified object

categories such as human faces to more complex non-rigidly deforming categories

that vary in terms of both pose and appearance. Recent works have also leveraged

advances in self-supervised learning of general visual representations (Cheng et al.,

2021; Karmali et al., 2022), making it difficult to properly assess how they compare

to older methods that do not utilize such self-supervised pre-training. In this chapter,

we attempt to shine light on the above questions in addition to exploring the role of

other factors such as the impact of pre-training and finetuning data, backbone models,

and the underlying evaluation criteria used to assess performance. Inspired by detailed

benchmarking investigation in human pose estimation (Ruggero Ronchi and Perona,

2017), we provide a thorough evaluation of the success and failure modes of current

methods to provide guidance for future progress.

We make the following three contributions: (i) A standardized evaluation of mul-

tiple existing approaches for unsupervised semantic correspondence estimation across

five challenging datasets. (ii) A new, conceptually simple, unsupervised training objec-

tive that results in superior semantic matching performance. (iii) A detailed breakdown

of the current failure cases for current best performing approaches and our proposed

new unsupervised method.

2.2 Related Work

Supervised Semantic Correspondence. Pre-deep learning work tackled semantic

correspondence estimation as a local region matching problem using hand-crafted fea-
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tures (Liu et al., 2010; Kim et al., 2013; Bristow et al., 2015), or as offset matching

using object proposals (Ham et al., 2017). In the deep learning era, several works in-

vestigated if object parts and regions emerge from image classification models (Zeiler

and Fergus, 2014; Zhou et al., 2016; Gonzalez-Garcia et al., 2018), i.e., models trained

only with image-level class supervision. (Long et al., 2014) showed that deep CNN

features could actually be used for semantic matching. Subsequent work built on this

by proposing new architectures specifically designed for semantic matching (Choy

et al., 2016a; Han et al., 2017; Kim et al., 2017; Rocco et al., 2017; Huang et al., 2019;

Lee et al., 2019; Kim et al., 2018). Some of these approaches focused on combining

multilevel features (i.e., hypercolumn features) from deep networks (Ufer and Om-

mer, 2017; Min et al., 2019a, 2020; Zhao et al., 2021), aggregating information from

features using 4D convolutions (Rocco et al., 2018, 2020; Li et al., 2020a; Lee et al.,

2021), leveraging geometric relations via Hough transforms (Min and Cho, 2021), or

using optimal transport (Sarlin et al., 2020; Liu et al., 2020). Some matching methods

formulate the problem as one of flow estimation between images (Liu et al., 2010; Min

et al., 2019a). However, unlike optical flow, semantic correspondence methods need to

be able to handle intra and inter-class variations when matching points. Recently, the

use of transformer-based models has also been explored (Cho et al., 2021; Jiang et al.,

2021). In contrast to most of the above works, we focus on the unsupervised setting,

whereby no supervised keypoint annotations are used to train our models.

Unsupervised Semantic Correspondence. Recent progress in self-supervised learn-

ing has resulted in a suite of methods that are capable of extracting discriminative

whole image representations without requiring explicit supervision (Van den Oord

et al., 2018; Wu et al., 2018; Chen et al., 2020b; Grill et al., 2020; He et al., 2020).

While the majority of these methods optimize objectives to discriminate global image

representations by using augmented image pairs, (Cheng et al., 2021; Karmali et al.,

2022) showed that these approaches can also be utilized in correspondence estimation.

Recently, several approaches proposed optimizing alternative objectives on a denser

level (Roh et al., 2021; Wei et al., 2021; Araslanov et al., 2021; O Pinheiro et al., 2020;

Wang et al., 2021a,b; Zhong et al., 2021). However, these methods have been applied

to tasks such as object detection and segmentation, but not directly for semantic cor-

respondence. Another line of work proposed methods to discover semantic keypoint

locations in an unsupervised way (Jakab et al., 2018; Zhang et al., 2018b; Kulkarni

et al., 2019b; Jakab et al., 2020; Ryou and Perona, 2021).

For the problem of correspondence estimation, images augmented with artificial



14 Chapter 2. Demystifying Unsupervised Semantic Correspondence Estimation

spatial deformations were used by (Kanazawa et al., 2016; Rocco et al., 2017) to

learn transformations between image pairs without any external supervision. Instead

of learning a function to match image pairs, (Thewlis et al., 2017b,a) framed the prob-

lem as one of learning a function that can extract local features which can be used

for semantic matching across all instances of a category of interest. To introduce

greater invariance for intra-category differences, DVE (Thewlis et al., 2019) extended

EQ (Thewlis et al., 2017a) with the use of additional non-augmented auxiliary images

during training.

More recent work has been able to make use of advances in self-supervised learn-

ing in order to learn more effective representations. CL (Cheng et al., 2021) proposed

a two-stage approach, combining image-level instance-based discrimination (He et al.,

2020) together with dense equivariant learning. They trained a linear projection head

on top of frozen learned features computed via an image-level self-supervised pre-

training task, where the goal of the projection step was to enforce the dense features

to be spatially distinct within an image. LEAD (Karmali et al., 2022) also followed

a similar two-stage approach, starting with instance-level discrimination using (Grill

et al., 2020). In the second stage, instead of encouraging the features to be spatially

distinct, their projection operation minimized the dissimilarity between feature corre-

lation maps from the instance-level features and correlation maps from the projected

features. This can be viewed as a form of dimensionality reduction as the projected

features are smaller in size compared to the original features.

The above methods, while effective on some datasets, have limitations. EQ (Thewlis

et al., 2017a) is only able to learn invariances that can be expressed via image augmen-

tations. DVE (Thewlis et al., 2019) assumes that the images have the same visible

keypoints, and can thus be negatively impacted by incorrect matches on background

pixels. The projection step used by CL (Cheng et al., 2021) runs the risk of discarding

invariances learned during the pre-training stage. While LEAD (Karmali et al., 2022)

maintains learned invariances from the first stage, if the pre-trained features generate

incorrect matches, their loss can end up optimizing possibly incorrect feature corre-

lations. In this work, we thoroughly benchmark the performance of these approaches

by evaluating them on several challenging datasets. We also propose a new semantic

correspondence loss, which learns more effective dense features by both preserving the

learned invariances while also making the features more distinct.

Performance Evaluation and Error Diagnosis. Benchmarking model performance

with a single summary metric is one of the best tools that we have for objectively
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measuring progress on a given task. However, accurately understanding the limitations

and improvements provided by new methods is even more crucial for future progress.

Several works have introduced different diagnostic tools and frameworks to analyze

methods across a variety of problems (Hoiem et al., 2012; Russakovsky et al., 2013;

Everingham et al., 2015; Zhang et al., 2016b; Sigurdsson et al., 2017; Alwassel et al.,

2018). For the semantic correspondence problem, the vast majority of existing works

only report performance via single summary metrics, e.g., the Percentage of Correct

Keypoints (PCK) with a fixed distance threshold. This allows us to get an overall

sense of performance but does not reveal why a given method performs better than

others. Recent works (Musgrave et al., 2020; Choe et al., 2020) have emphasized

the importance of detailed evaluation in order to better understand what components

specific performance improvements can be attributed to. In this work, in the spirit

of (Ruggero Ronchi and Perona, 2017), we introduce a more thorough evaluation for

analyzing semantic correspondence methods. We also propose a new version of PCK

which better captures correspondence errors and present standardized baseline results

across multiple datasets to fairly compare semantic correspondence performance.

2.3 Semantic Correspondence Estimation

2.3.1 Problem Setup

Given a source-target image pair, xs and xt , the goal of correspondence estimation is

to find the locations of a set of points of interest from the source image in the target

image. Unlike in optical flow or stereo estimation, where the task is to compute corre-

spondence across time or viewpoint, in the case of semantic correspondence, the goal

is to find matching locations across different depictions of the same object category.

This is a challenging setting as the objects of interest can vary in terms of appearance,

pose, and shape, in addition to difficulty arising from other nuisance factors such as

the background, occlusion, and lighting.

We pose the correspondence problem as a nearest-neighbor matching task in a

learned local feature embedding space. Formally, for a pixel location, u∈Ω={1, ...,H}
×{1, ...,W}, in a source image of size H ×W , we find the corresponding point û in

the target image xt as, û= argmaxk∈Ω f (Φu(xs),Φk(xt)), where Φu(xs) represents an

embedding vector of the point u from image xs, and f is a similarity function. We use

a deep neural network as our embedding function Φ, and the similarity is computed
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Figure 2.1. Unsupervised approaches for semantic correspondence estimation. x′ is a syntheti-

cally augmented version of image x, and xα is a different image of the same semantic category.

EQ (Thewlis et al., 2017a) minimizes the distance between embeddings of point pairs with

known geometric transformations g. DVE (Thewlis et al., 2019) builds on EQ by using an ad-

ditional auxiliary image. CL (Cheng et al., 2021) maximizes the distance between embeddings

of points within an image. LEAD (Karmali et al., 2022) enforces the same distance between

pre-trained and projected embeddings. Our ASYM method extends LEAD by enforcing pro-

jected embeddings to be closer in the feature space.

via the dot product of the ℓ2 normalized embedding vectors. In practice, we decom-

pose the embedding function into a feature encoder, followed by a projection step, i.e.,

Φ(x)=ρ(Ψ(x)), where the encoder is a deep network. The purpose of the projection

is to reduce the dimensionality of the feature, and could be a linear operation (Cheng

et al., 2021) or a network (Karmali et al., 2022).

In the next section, we review several existing unsupervised methods designed for

learning dense representations with an emphasis on matching (see Figure 2.1 for an

overview). While more sophisticated methods have been proposed for estimating se-

mantic correspondence, e.g., using optimal transport (Sarlin et al., 2020; Liu et al.,

2020), distance re-weighting with spatial regularizers (Min et al., 2019a), or restricting

the search area with class activation maps (Zhou et al., 2016) as in (Liu et al., 2020), we

focus on learning embedding functions as recent work has shown that combining self-

supervised representation learning with correspondence specific finetuning produces

state of the art results (Cheng et al., 2021; Karmali et al., 2022).
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2.3.2 Unsupervised Semantic Correspondence Learning

EQ (Thewlis et al., 2017a) proposed an unsupervised method that utilizes the equivari-

ance principle to learn dense matchable features. During training, their model takes an

image x along with an augmented version of it x′ and tries to minimize feature simi-

larity of known corresponding pixel locations u and v. Here, x′ is derived from x using

artificial spatial and appearance-based augmentations and the pixel coordinates u and

v are locations from the two images which are related by a known transformation g,

such that v = gu. They minimize the following loss,

  \label {eq:equivariance2} \mathcal {L}_{\mathit {eq}} = \frac {1}{|\Omega |^2} \sum _{u \in \Omega }\sum _{v \in \Omega }\|gu-v\| ~p(v | u; \Phi , \mathbf {x}, \mathbf {x}', \tau ), 








   (2.1)

  \label {eq:softdiv} p(v |u; \Phi , \mathbf {x}, \mathbf {x'},\tau ) = \frac {\text {exp}(\langle \Phi _u(\mathbf {x}), \Phi _v(\mathbf {x}') \rangle /\tau )}{\sum _{k \in \Omega } \text {exp}(\langle \Phi _u(\mathbf {x}), \Phi _k(\mathbf {x}') \rangle /\tau )}, 



 (2.2)

where τ is the temperature parameter for the softmax function and Ω is the set of

possible pixel locations on the image grid. In essence, the model aims to embed cor-

responding points nearby in the learned embedding space, while also pushing other

points further away.

EQ uses artificially augmented image pairs and can thus only learn invariances

up to those expressible by these augmentations. Subsequently, DVE (Thewlis et al.,

2019) extended EQ using an auxiliary image, xα, to calculate correspondence from

x → xα and then xα → x′. This is achieved by replacing the Φu(x) term in Equa-

tion 2.2 with Φ̂u(x|xα) = ∑w Φu(xα)p(w|u;Φ,x,xα,τ). Importantly, the ground truth

correspondence to the auxiliary image does not need to be known as the mapping from

x → x′ is available.

Recently, two-stage methods for learning dense embeddings have been proposed

(Cheng et al., 2021; Karmali et al., 2022). In these approaches, the first stage makes

use of an image-level self-supervised training objective (e.g., (He et al., 2020; Grill

et al., 2020)) in order to train the feature encoder. Then the projection head is tuned to

refine the representation so that it is better for matching. Like EQ, CL (Cheng et al.,

2021) also aims to make features distinct within the image. However, in contrast to

EQ, the dense D dimensional feature vectors from Ψ(x) are linearly projected to a

lower dimension D′ using a linear projection with weights w ∈ RD×D′
. They use the

same loss as Equation 2.1, but simply use x instead of x′, i.e., they do not use a pair of

augmented images.

LEAD (Karmali et al., 2022) also employs a two-stage approach but aims to maxi-

mize the similarity between feature correlation maps calculated using the original self-
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supervised features Ψ(x) and the projected features Φ(x). The first term in their loss

represents the probability that point u from image x is matched with point v in image

xα using embeddings from the feature encoder Ψ. In the second term, embeddings

are projected to a lower dimensional space using the combined encoder and projection

head,

  \label {eq:lead} \mathcal {L}_{\mathit {lead}} = \frac {1}{|\Omega |^2} \sum _{u \in \Omega }\sum _{v \in \Omega }~-p(v | u; \Psi , \mathbf {x}, \mathbf {x}^\alpha , \tau ) \log {p(v | u; \Phi , \mathbf {x}, \mathbf {x}^\alpha , \tau )}. 








    (2.3)

LEAD uses ‘real’ image pairs, as opposed to augmented images, i.e., xα is not a syn-

thetically augmented version of x, but instead it is an auxiliary real image depicting the

same object class. This is possible as their formulation does not require any ground

truth correspondence during training. In essence, LEAD implements a form of learned

dimensionality reduction, which can be effective if the pre-trained features already

contain useful information for matching.

EQ and DVE were originally designed such that their embedding network Φ was

trained in an end-to-end manner, while CL and LEAD separately trained the encoder

network Ψ, followed by the learned projection function ρ. Existing methods often use

different network architectures for the encoder and decoder which makes it challenging

to compare the objective functions directly. To fairly evaluate these approaches, in our

experiments, we use frozen pre-trained networks as the encoder Ψ, and train a separate

linear projection head ρ, i.e., Φ(x) = ρ(Ψ(x)), for each of the losses.

2.3.3 Unsupervised Asymmetric Correspondence Loss

The LEAD objective aims to preserve distances between features before and after they

have been projected into a lower-dimensional feature space. Given two points, u and v,

from different images, the loss term effectively tries to enforce f (Ψu(x),Ψv(xα)) and

f (Φu(x),Φv(xα)) to be as close as possible. The projection tries to maintain both what

is similar and not similar between point pairs by preserving their distance. However,

the structure of the embedding space does not change after this projection step which

means that performance is bounded by the quality of the features in the original feature

space.

We make a conceptually simple change to the LEAD objective in order to provide

the flexibility to allow the model to change distances in the projected feature space.

Unlike LEAD, instead of using the same temperature value in the softmax function for

both feature spaces, we utilize a different temperature when we calculate the similarity

between point embeddings. Specially, we use a smaller temperature for the original
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feature space and a larger one for the projected feature space, i.e., τ1 < τ2, resulting in

the following loss,

  \label {eq:asym} \mathcal {L}_{\mathit {asym}} = \frac {1}{|\Omega |^2} \sum _{u \in \Omega }\sum _{v \in \Omega }||~p(v | u; \Psi , \mathbf {x}, \mathbf {x}^\alpha , \tau _{1}) - p(v | u; \Phi , \mathbf {x}, \mathbf {x}^\alpha , \tau _{2})||. 








   (2.4)

A smaller temperature makes the distance between closer points smaller and far away

points larger. To match these same distance scores, the projection needs to make em-

beddings of closer points closer and vice versa. Moreover, the objective also preserves

the order of distances of point pairs, i.e., close points remain closer compared to fur-

ther away ones. As a result, the projection needs to capture what is common between

already matching point pairs in order to optimize the loss which leads to better em-

beddings for matching. While this is a relatively small change in the loss formulation,

it results in a significant improvement in the performance. As we use different tem-

perature parameters, we refer to our asymmetric projection loss as ASYM. The other

difference between ASYM and LEAD is that we make use of Euclidean distance in-

stead of cross entropy as we found this to be more effective. We compare the impact

of these design choices via detailed ablation experiments.

2.4 Evaluation Protocol

2.4.1 Evaluation Metrics

There are two dominant approaches for benchmarking the performance of unsuper-

vised correspondence estimation methods: (i) landmark regression and (ii) feature

matching. For landmark regression, an additional supervised regression head is trained

for each of the landmarks of interest (e.g., the keypoints of a human face) on top of the

representation learned by the correspondence network. For matching, one simply com-

putes the distance in feature space to all the points in the second image for a given point

of interest in a source image and then selects the closest match as the corresponding

point.

We argue that matching is a better task for evaluating the power of learned feature

embeddings as regression requires ground truth supervision to train the additional pa-

rameters. As matching uses raw feature embeddings it cannot incorporate biases from

datasets, e.g., exploiting the average locations of keypoints. While current literature

tends to focus on regression evaluation, there are some exceptions to this. However,

by and large, matching results are only presented for comparably easier datasets. For
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(a) Source (b) Match (c) Miss (d) Jitter (e) Swap

Figure 2.2. For the keypoint denoted in red in the source image (a), we see the correct match in

(b). If the point matches with the background it is a miss (c), if it is close to the correct location

it is a jitter (d). If the match is in the correct vicinity but closer to another semantic part, it is a

swap error (e).

example, (Thewlis et al., 2019; Cheng et al., 2021; Karmali et al., 2022) only present

matching results on the MAFL dataset (Zhang et al., 2015). MAFL contains cropped

and aligned images of human faces, and current methods perform very well on it, with

matching errors close to two pixels on average.

2.4.1.1 Percentage of Correct Keypoints (PCK)

Traditionally, matching performance is measured using the PCK metric. Given a set of

ground truth keypoints P = {pm}M
m=1 and predictions P̂ = {p̂m}M

m=1, PCK is calculated

as PCK(P , P̂ ) = 1
M ∑

M
m=11[∥p̂m −pm∥ ≤ d]. Here, d = αmax(W b,Hb) is a distance

threshold, chosen as a proportion (e.g., α = 0.1 of the maximum side length) of the

object bounding box (with width W b and height Hb) size. A prediction is counted as

correct if it is inside of the target keypoint area.

2.4.1.2 Detailed Error Evaluation

Inspired by (Ruggero Ronchi and Perona, 2017), we define additional error metrics to

analyze the performance of different methods in more detail. A visual overview is illus-

trated in Figure 2.2. If a point is matched with a point that not is close to any of the key-

points in the target image, we denote this error as a ‘miss’. This error generally occurs

when a point is matched with the image background: Emiss =1[d <min{∥p̂m −p∥| p∈
P}]. If a prediction is in the correct vicinity, but outside of the defined distance thresh-

old, we denote this a ‘jitter’, E jitter = 1[d < ∥p̂m −pm∥ < 2d]. The last error type is

a ‘swap’ which occurs when a point matches in an area that is closer to a different

keypoint, Eswap = 1[δ ̸= ∥p̂m −pm∥∧ d > δ], where δ = min{∥p̂m −p∥| p ∈ P}.

The miss and jitter errors are also counted as incorrect by the PCK metric, but

swaps may still be counted as correct. For instance, a prediction which is in the middle



2.4. Evaluation Protocol 21

of a pair of eyes might still be counted as correct according to PCK even if it is closer

to the wrong eye since it could be still within the distance threshold. As our goal is to

estimate semantic correspondence, we should aim to match with the correct semantic

part. As a result, we propose a new version of PCK which penalizes these swaps.

Under this metric, to make a correct prediction, a point needs to both match close

to the corresponding keypoint and the closest keypoint should be the same semantic

keypoint,

  PCK^{\dag }(\mathcal {P}, \mathcal {\hat {P}}) = \frac {1}{M}\sum _{m=1}^{M} \mathbbm {1} [\norm {\hat {\mathbf {p}}_{m} - \mathbf {p}_{m}} \leq d ~\wedge ~ \delta = \norm {\hat {\mathbf {p}}_{m} - \mathbf {p}_{m}}].   








           (2.5)

2.4.2 Evaluation Datasets

In order to evaluate semantic correspondence performance we perform experiments on

five different datasets: AFLW (Koestinger et al., 2011), Spair-71k (Min et al., 2019b),

CUB-200-2011 (CUB) (Wah et al., 2011), Stanford Dogs Extra (SDog) (Khosla et al.,

2011; Biggs et al., 2020), and Awa-Pose (Xian et al., 2018; Banik et al., 2021). These

datasets were chosen as they span a range of object category types (e.g., from man-

made to natural world classes) and exhibit different levels of difficulty (e.g., from topo-

logically simple human faces to deformable animals). AFLW (Koestinger et al., 2011)

contains images of human faces with various backgrounds from different viewpoints.

However, due to the structured nature of faces, the visual difference between images

are limited and thus the task is relatively easy compared to the other datasets. SDog

(Khosla et al., 2011; Biggs et al., 2020) and CUB (Wah et al., 2011) contain images of

fine-grained visual categories (dogs and birds, respectively) and include highly vary-

ing appearance, diverse backgrounds, and non-rigid poses which result in a challenging

matching task. Awa-Pose (Xian et al., 2018; Banik et al., 2021) contains images from

35 different animal species and allows us to assess inter-class correspondence as the

keypoints are shared across the species. SPair-71k (Min et al., 2019b) contains scenes

featuring multiple man-made objects with complex backgrounds, varying object sizes,

challenging illumination conditions, and some symmetric object classes such as bottles

and plant pots, making the dataset particularly difficult. However, the image pairs are

drawn from the same object class, and the overall dataset size is relatively small. An

overview can be found in Table 2.1.

Only the annotations in SPair-71K were explicitly collected with a focus on se-

mantic correspondence evaluation. For the other datasets, there are no pre-defined

image pairs or standardized correspondence evaluation splits. In the existing litera-
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ture random image pairs are selected that make direct comparisons between alternative

methods challenging (Zhao et al., 2021; Li et al., 2020a; Choy et al., 2016a). As the

keypoint annotations are semantically consistent across instances in these datasets, we

create splits for each dataset, where random image pairs are selected from test splits of

the datasets. We published these splits in order to aid future evaluation.

Dataset Name # Images # Pairs # Classes Annotations Matching Diversity

SPair-71k Min et al. (2019b) 2k 70k 18 KP (3-30), Bbox Med

Stanford Dogs (SDog) Biggs et al. (2020) 10k 10k 120 KP (24), Bbox Med

CUB-200-2011 (CUB) Wah et al. (2011) 11k 10k 200 KP(15), Bbox Med

AFLW Koestinger et al. (2011) 13k 10k - KP(5) Low

Awa-Pose Banik et al. (2021) 10k 10k 36 KP (30-40), Bbox High

Table 2.1. Summary of the different datasets that we use for evaluating semantic correspon-

dence performance. We also report the metadata that is provided with each dataset: KP (key-

points/landmarks) and Bbox (bounding boxes). With the exception of Spair-71k, there are no

pre-defined evaluation pairs for the datasets.

2.4.3 Implementation Details

We perform experiments with two different types of backbone models for our feature

encoder Ψ. For the CNN, unless otherwise specified, we extract features from images

resized to 384×384, and use the 1024 dimensional features from the conv3 layer of a

ResNet-50 (He et al., 2016). We use a ResNet-50 trained on Imagenet (Russakovsky

et al., 2015) as our supervised baseline, and MoCov3 (Chen et al., 2021) as our un-

supervised CNN. For the Transformer, 8×8 patches from 224×224 images with stride

8 are used as input (similar to (Amir et al., 2022)) and we extract 736 dimensional

features from the 9th layer. We also investigate supervised and self-supervised trained

backbones. The supervised and self-supervised CNNs are from (He et al., 2016) and

(Chen et al., 2021) and the Transformer models are from (Kolesnikov et al., 2021) and

(Caron et al., 2021), respectively. During training, we upsample feature maps to 64×64

via bilinear interpolation.

For our projection head ρ, a single 1×1 2D convolution is trained and the dimen-

sion of the features is reduced to 256. During training, as in (Cheng et al., 2021),

we freeze the feature encoder Ψ. The projection head is trained for 50 epochs using

Adam (Kingma and Ba, 2014) optimizer with a learning rate of 0.001. Unless stated

otherwise, we report results using the standard PCK metric with α = 0.1 for direct

comparison to other methods. For EQ, DVE, and LEAD, we set the temperature τ to
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0.05 and 0.14 for CL as described in their papers, and set τ1 to 0.2 and τ2 to 0.4 for

ASYM.

2.5 Experiments

In our experiments, we attempt to answer the following questions: i) how well do cur-

rent unsupervised correspondence methods perform on challenging datasets, ii) how

does the choice of backbone architecture and pre-training objective impact perfor-

mance, iii) how does the pre-training data source impact performance, iv) how does

the data source used for finetuning the correspondence model impact performance,

and finally, v) what are the current source of errors, and thus what needs to be done to

close the gap between current state-of-the-art supervised and unsupervised methods.

2.5.1 Impact of Unsupervised Correspondence Objective

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 31.8 34.9 51.3 57.4 28.8

NMF 27.4 33.9 49.6 53.6 28.0

PCA 32.2 35.5 53.1 57.8 29.7

Random 26.9 30.5 43.1 54.9 23.4

Supervised 38.7 53.2 72.7 80.8 46.1

EQThewlis et al. (2017a) 16.4 21.2 28.1 48.5 15.6

DVEThewlis et al. (2019) 16.3 20.5 27.7 58.7 15.4

CLCheng et al. (2021) 30.8 37.0 54.5 67.3 31.7

LEADKarmali et al. (2022) 31.7 35.1 51.5 58.0 29.1

ASYM (Ours) 34.0 40.4 60.8 63.6 34.1

(a) Ψ = Sup. pre-trained - CNN

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 30.7 34.3 47.5 64.3 27.6

NMF 20.6 19.9 44.0 40.8 15.6

PCA 27.4 29.8 50.7 51.0 24.1

Random 26.6 31.5 40.0 60.2 23.3

Supervised 39.5 54.0 73.4 83.8 48.2

EQThewlis et al. (2017a) 14.3 20.5 26.4 62.8 15.5

DVEThewlis et al. (2019) 15.0 19.4 28.7 60.6 14.7

CLCheng et al. (2021) 29.7 37.9 54.1 77.1 33.4
LEADKarmali et al. (2022) 30.5 34.4 48.3 64.9 28.1

ASYM (Ours) 33.2 38.2 54.4 69.7 32.1

(b) Ψ = Unsup. pre-trained - CNN

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 33.5 38.0 66.3 54.1 34.1

NMF 23.3 29.2 55.5 51.5 24.7

PCA 33.0 38.1 66.4 53.9 34.1

Random 31.9 36.9 63.3 52.9 31.8

Supervised 38.5 48.2 78.2 70.5 47.9

EQThewlis et al. (2017a) 15.5 15.9 24.0 60.2 11.7

DVEThewlis et al. (2019) 15.4 17.5 23.8 55.6 11.8

CLCheng et al. (2021) 30.5 35.8 67.1 68.4 31.0

LEADKarmali et al. (2022) 32.7 37.6 65.8 53.8 33.9

ASYM (Ours) 33.2 41.7 72.2 54.2 38.5

(c) Ψ = Sup. pre-trained - Transformer

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 34.1 42.7 61.0 64.2 36.1

NMF 26.3 39.0 51.9 61.0 32.9

PCA 34.0 42.7 61.0 64.2 36.1

Random 32.3 42.1 59.6 61.9 34.6

Supervised 38.1 52.7 72.9 92.0 47.4

EQThewlis et al. (2017a) 9.0 12.5 15.0 62.5 8.8

DVEThewlis et al. (2019) 8.5 13.1 14.1 60.6 9.0

CLCheng et al. (2021) 25.8 32.3 54.1 81.8 25.0

LEADKarmali et al. (2022) 33.6 42.5 60.8 64.2 35.8

ASYM (Ours) 32.9 45.2 65.2 65.9 39.9

(d) Ψ = Unsup. pre-trained - Transformer

Table 2.2. Comparison of different unsupervised semantic correspondence methods. Here

we vary the backbone models and pre-training strategies. The unsupervised correspondence

methods are trained on the respective evaluation datasets.
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To evaluate the unsupervised correspondence methods outlined in Section 2.3, in Ta-

ble 2.2, we train a linear projection head ρ on top of the embeddings from a frozen pre-

trained backbone Ψ. Additional baselines are also presented, including: pre-trained

features directly from the backbone models with no projection (None), Non-Negative

Matrix Factorization (NMF), Principal Component Analysis (PCA), projection using a

Random weight matrix, and Supervised projection where we optimize the objective in

Equation 2.1 using ground truth keypoint pairs. We explore CNNs and Transformers

as backbones that are pre-trained either in a supervised or self-supervised fashion.

Overall, our proposed ASYM approach obtains better scores than other unsuper-

vised methods on all datasets, independent of the choice of backbone or pre-training

method, with the exception of the AFLW face dataset. Compared to LEAD, our pro-

posed adaptation improves performance on datasets where the visual diversity is high

(i.e., non-face datasets). EQ and DVE perform poorly on datasets where the visual

appearance is high across instances, but it is worth noting that these methods were

originally designed for the end-to-end trained setting. CL obtains good performance in

some cases and is the best on AFLW. However, our ASYM method is still consistently

strong. Perhaps somewhat surprisingly, PCA based projection performs better than

most of the baselines, while NMF did not perform well. PCA’s performance can be

partially explained by the strength of the original features (i.e., None). Although the

performance of unsupervised methods differs across different backbones, the relative

ordering stays the same – Sup, ASYM, CL, PCA, NONE, LEAD, NMF, EQ, and DVE.

2.5.2 Impact of Backbone Model and Pre-training Objective

While (Cho et al., 2021) claims that the choice of CNNs or Transformers as the back-

bone model does not affect the performance, recently (Amir et al., 2022) presented

impressive correspondence results using a Transformer-based model. In order to ex-

plore further, we compared features from models pre-trained on Imagenet with either

supervised (Sup.) or unsupervised (Unsup.) objectives.

When a projection layer is trained with keypoint supervision, the performance dif-

ference between architectures diminishes, as can be observed by comparing the super-

vised baseline to original embeddings (None) in Table 2.2. However, when the pro-

jection layer is trained using no supervision, the best results are obtained in the cases

where the initial embeddings were the best on a given dataset. For instance, the un-

supervised pre-trained Transformer obtains the best results with no projection on the
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SDog and Awa datasets compared to other backbone models. Training the unsuper-

vised methods from these embeddings also results in the best performance compared

to other pre-trained backbones. In summary, if keypoint supervision is available, the

choice of backbone does not significantly impact the end result. However, in the unsu-

pervised case, starting with good performing embeddings is important. Furthermore,

the pre-training strategy does not affect the performance of CNNs, while unsupervised

Transformers generally perform better than supervised ones (see Table 2.2).

2.5.3 Impact of Pre-training Dataset

Here, we explore the impact of the pre-training data source used to train the feature

encoder. We train correspondence losses using embeddings from a CNN trained via

contrastive self-supervision on either Imagenet (Russakovsky et al., 2015) (various

categories), iNat2021 (Van Horn et al., 2021) (natural world categories), or Celeb-A

(Liu et al., 2015) (human faces). Specifically, we use MoCov3 from (Chen et al.,

2021) for Imagenet, MoCov2 (Chen et al., 2020c) for iNat from (Van Horn et al.,

2021), and MoCov2 from (Cheng et al., 2021) for CelebA. These results are presented

in Figure 2.3.

It is clear that the choice of pre-training data has an impact on all unsupervised

methods, with Imagenet outperforming other sources. The CelebA model performs

poorly on all tasks with the exception of AFLW, as the features likely only contain

information about faces. iNat2021 does not contain any man-made objects or dog

categories, and as a result, models trained on it perform worse on SDog and Spair.

While iNat2021 contains many bird images, it contains an order of magnitude less

mammals making it less effective on Awa-Pose.

2.5.4 Impact of Finetuning Correspondence Dataset

Next, we explore how transferable the embeddings are trained on one dataset and eval-

uated on another. For instance, what happens if the linear projection is trained on dog

images and then tested on birds, or in an extreme case, trained on human faces and

tested on animal categories. The correspondence losses are trained on top of the sup.

CNN from Table 2.2. The results are outlined in Figure 2.4.

The generalization performance across other datasets is poor for supervised losses

compared to the unsupervised ones. The performance drop is largest for models trained

on faces, but when training on other data and tested on faces, the performance does not
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Figure 2.3. Impact of different pre-training datasets used to train a CNN feature encoder using

self-supervised training. For each of the three datasets, we report the performance of different

methods shown as individual dots. Models pretrained on ImageNet tend to perform better, as

their learned features are more generalizable across diverse datasets. Since the three datasets

are roughly the same size, differences in dataset size and measurement scale are not significant

factors here.
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Figure 2.4. Cross dataset evaluation results. Each row represents the test source data, and each

column is the dataset that a given correspondence loss is trained on. Note that the colormaps

are row normalized. These results use the same initial encoder as the ‘Sup. pre-trained - CNN’

results in Table 2.2.

drop significantly. Models trained on Spair-71k generally perform reasonably well on

other datasets.

2.5.5 Detailed Error Analysis

Here we break down the different error types in order to better understand where the

different methods fail and thus require improvement. We compare unsupervised cor-

respondence losses and supervised projection to the current best-performing methods

CATs (Cho et al., 2021), CHM (Min and Cho, 2021), and MMNet (Zhao et al., 2021)

on Spair-71K. The results are presented in Table 2.3.

For the supervised methods, MMNet has significantly lower miss errors compared

to all other methods, although it results in a lot of swaps. As this method combines
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FT Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK†↑

U
ns

up
.

CL 51.5 13.7 24.3 30.8 24.2

EQ 68.3 15.0 18.9 16.4 12.8

DVE 67.9 14.9 19.7 16.3 12.4

LEAD 47.1 13.6 27.4 31.7 25.4

ASYM 44.1 13.2 28.6 34.0 27.2

Su
p.

Supervised 40.2 14.9 29.4 38.7 30.4

CATs Cho et al. (2021) 46.3 21.0 21.9 42.4 31.7

✓ CATs Cho et al. (2021) 40.1 19.1 20.3 49.9 39.6

✓ CHM Min and Cho (2021) 40.3 18.2 23.8 44.2 35.8

✓ MMNet-FCNZhao et al. (2021) 28.5 14.7 28.8 52.2 42.6

(a) α = 0.1

FT Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK†↑

U
ns

up
.

CL 71.5 13.2 12.9 17.7 15.6

EQ 85.1 8.8 8.0 7.6 6.9

DVE 85.3 9.0 8.3 7.3 6.5

LEAD 66.9 12.4 15.9 19.3 17.3

ASYM 63.3 12.6 17.5 21.5 19.2

Su
p.

Supervised 61.1 14.6 17.6 24.1 21.3

CATs Cho et al. (2021) 71.0 20.7 10.8 21.6 18.1

✓ CATs Cho et al. (2021) 64.8 22.2 10.7 27.7 24.4

✓ CHM Min and Cho (2021) 64.5 18.7 12.4 25.6 23.1

✓ MMNet-FCNZhao et al. (2021) 51.7 19.0 18.1 33.3 30.2

(b) α = 0.05

Table 2.3. Detailed error types for both unsupervised and supervised correspondence losses on

Spair using two different distance thresholds. FT indicates if the backbone was finetuned with

keypoint supervision. Our baselines use the ‘Sup. pre-trained - CNN’ encoder from Table 2.2,

in other cases we use the public models by the authors. All models use a ResNet backbone,

except MMNet-FCNZhao et al. (2021).

correlation maps from different layers, it is able to capture more global context, which

helps reduce misses. However, while CATs and CHM produce more misses compared

to MMNet, swaps are reduced, as they use more sophisticated aggregation methods

(6D convolution and attention) to resolve ambiguities during matching. Moreover, as

these two lines of work complement each other in the error types, they could potentially

be combined to obtain better results.
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For the unsupervised methods, we see that the most common error type is miss

across all methods. While ASYM reduces misses compared to other unsupervised

methods, it is not as good as the supervised approaches. As swaps are instances where

a match has occurred, but to the wrong keypoint, methods with a high number of

misses will not have many swaps by definition. ASYM results in fewer misses, which

is desirable, but this increases the chance that swaps can occur. The ‘Supervised’ base-

line reduces misses, but compared to the more sophisticated supervised approaches,

it generates more swaps. We argue that while more supervision might help to reduce

misses, in order to reduce swaps, better matching mechanisms are needed, as in (Cho

et al., 2021; Min and Cho, 2021).

Jitter occurs when a prediction falls within the correct vicinity but lies outside the

defined distance threshold. Since this type of error requires the prediction to already

be near the target, it cannot be meaningfully interpreted on its own and should be

considered alongside the PCK scores. If two methods yield similar jitter scores but

one achieves a higher PCK score, this indicates that the method with the higher PCK

has fewer jitter errors. For instance, we observe that MMNet-FCN (Zhao et al., 2021)

achieves a low jitter error along with strong PCK scores, indicating fewer jitter errors

compared to the supervised baseline, which shows a similar jitter score but lower PCK

performance.

Finally, we can see that our PCK† metric is reduced by ∼ 20% compared to the

original PCK metric in all cases. This indicates that in one in five cases, the source

point matches an area closer to another keypoint instead of the correct correspond-

ing point. For some applications, these errors might not affect the end performance

drastically, while for others, this disparity could be significant.

We also present the detailed error analysis and report scores using our PCK† metric

in Table 2.4 for the other datasets that were used in the previous experiments. Similar

to the Spair-71k results from the previous experiments, the most common error type

is ‘miss’ among all datasets. Our ASYM approach generally reduces misses com-

pared to other unsupervised losses. With the exception of the AFLW dataset, there is

a noticeable difference between PCK† and PCK scores. For AFLW, the keypoints that

correspond to each other are well-defined and far apart from each other as the faces are

large. As a result, there are far fewer swaps, and so PCK† scores are close to their PCK

counterparts. In contrast, for CUB, most of the points are distributed close to the head

region of the birds which leads to a lot of swaps and a drop in scores for our new pro-

posed metric. This highlights the importance of using a proper metric for evaluating
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the semantic correspondence task. Matching a keypoint from the beak of a bird to the

eye of another bird is not a correct semantic match, but with the current PCK metric,

it would be labeled as correct if it was within the distance threshold.

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 55.9 21.4 25.9 21.2 18.2

DVE 57.7 21.8 24.8 20.5 17.5

CL 40.9 17.9 27.3 37.0 31.9

LEAD 38.0 16.2 31.2 35.1 30.8

ASYM 33.1 16.3 31.4 40.4 35.5

Supervised 23.7 16.7 29.0 53.2 47.3

(a) SDogs

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 44.0 24.8 35.2 28.1 20.9

DVE 44.3 24.6 35.7 27.7 20.0

CL 24.8 20.1 34.6 54.5 40.7

LEAD 28.1 17.4 31.8 51.5 40.1

ASYM 21.7 16.9 29.8 60.8 48.5

Supervised 14.3 15.2 25.4 72.7 60.2

(b) CUB

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 38.0 26.0 14.2 48.5 47.8

DVE 24.9 21.2 17.3 58.7 57.8

CL 18.0 11.4 15.2 67.3 66.8

LEAD 13.6 10.7 28.8 58.0 57.5

ASYM 11.7 7.9 25.2 63.6 63.1

Supervised 7.0 4.7 12.7 80.8 80.4

(c) AFLW

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 52.0 19.6 38.7 15.6 10.3

DVE 52.1 19.2 37.8 15.4 10.1

CL 38.4 16.8 41.5 31.7 20.1

LEAD 37.1 16.3 44.0 29.1 18.9

ASYM 32.2 16.7 45.6 34.1 22.1

Supervised 23.4 18.3 46.3 46.1 30.3

(d) AWA

Table 2.4. Evaluation of error types across four different datasets. In addition to PCK, we also

report scores for our PCK† metric.

2.6 Additional Ablation Experiments and Analysis

2.6.1 Impact of the Temperature Value

In Table 2.5, we explore the impact of the temperature for the different unsupervised

losses. While the performance of LEAD, ASYM, and DVE do not change significantly

with different temperature choices, the performance of CL is impacted drastically, i.e.,

when using the recommended value of 0.14 from their paper, we obtain a PCK of 30.8

for Spair-71K in Table 2.2. As noted in the main experiments, for EQ, DVE, and LEAD

we set the temperate τ to 0.05 and used 0.14 for CL based on the recommendations in

the original papers. We use the same temperature values for all datasets.

2.6.2 Impact of Design Choices for ASYM

As our new proposed ASYM loss is an adaptation of LEAD, here we present exper-

iments ablating our design choices. ASYM differs from LEAD in two respects: (i)
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Metric τ1 τ2 DVE CL LEAD ASYM

PCK

0.02 0.04 16.5 9.2 31.9 31.7

0.05 0.1 16.3 8.2 31.7 32.1

0.1 0.2 16.0 17.2 31.9 33.0

0.2 0.4 15.7 26.6 31.4 34.0

0.4 0.8 9.2 15.8 30.1 29.5

PCK†

0.02 0.04 12.9 7.5 25.5 25.4

0.05 0.1 12.4 6.6 25.4 25.8

0.1 0.2 12.4 13.8 25.4 26.6

0.2 0.4 12.1 20.0 25.1 27.2

0.4 0.8 6.9 11.2 23.8 23.1

Table 2.5. Temperature ablation experiment for unsupervised losses on Spair-71K. Here we

use the ‘Sup. pre-trained - CNN’ encoder from the previous experiments. With the exception

of ASYM, all methods use τ1 as their τ and do not use τ2 at all.

ASYM uses different temperature values for the correlation maps for the original fea-

tures and the projected features, and (ii) ASYM uses a mean square error (MSE), as

opposed to cross entropy (CE) which is used in LEAD. As can be seen in Table 2.6,

the MSE loss performs worse for LEAD while it improves the performance of ASYM.

However, the main difference in overall performance is not a result of the choice of

penalty function (i.e., MSE versus CE), but the usage of different temperature pa-

rameters. In Table 2.6, we can see that changing the temperature for LEAD has no

significant impact on the final performance.

Method τ1 τ2 MSE CE

LEAD

0.05 - 31.5 31.7

0.1 - 30.6 31.9

0.2 - 29.9 31.4

0.4 - 27.4 30.3

ASYM

0.05 0.1 32.1 32.0

0.1 0.2 33.0 32.8

0.2 0.4 34.0 32.0

Table 2.6. Loss and temperature ablation for ASYM and LEAD on Spair-71K. For both meth-

ods, Mean Square Error (MSE) and Cross-Entropy (CE) losses are used. ASYM using CE with

the same temperature value for both τ1 and τ2 is equivalent to LEAD.

Due to changes in the formulation, the objectives that ASYM and LEAD optimize
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(a) Source (b) Target (c) None (d) LEAD (e) ASYM

Figure 2.5. Feature matching scores for different methods for the keypoint on on the birds head

(indicated in blue) from the source images in (a) to the target in (b). By design, LEAD matches

the distribution from the original feature space shown in (c). We can see that our ASYM

method results in a much more sharper distribution around the correct location compared to

LEAD.

also differ. For a given pair of points and their similarity score, LEAD reduces the di-

mensionality of the embeddings for these points while maintaining the same similarity

scores as the input feature space. This is achieved by capturing both what is common

and not common between the pair of points. Using higher or lower temperature values

does not change the feature distances in the LEAD. However, in our ASYM objec-

tive, for a point pair which has a high similarity score, the projection needs to make

these points even closer in order to match with the same similarity score from the input

features as the projected embeddings use a higher temperature value. A visualization

of the result of this can be observed in Figure 2.5. As expected, for a given keypoint

and a target image LEAD produces a very similar similarity map compared to the one

calculated with the original features. In contrast, ASYM produces a more ‘peaked’

similarity map, since matching points from original features become closer in the new

embedding space.

We also compare how the similarity scores change after unsupervised projection.

For a source keypoint, we calculate the cosine similarity scores for all pixel embed-

dings in the target image. If a point is within the threshold area of a target keypoint

we refer to these points as ‘correct’ matches, otherwise they are classed as ‘wrong’

matches. We visualize the histogram of these scores for all datasets in Figure 2.6. As

can be seen from the distributions, LEAD results in histograms that are very similar

to original input features (i.e., None). However, ASYM reduces the overlap between

the correct and wrong distributions. As expected, if the similarity scores for correct

matches are not larger than wrong matches, ASYM cannot improve the embeddings

significantly, as seen in the Awa dataset.
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Figure 2.6. Histograms for cosine similarity scores of embeddings for (a) None, (b) LEAD,

and (c) ASYM. Each row is a different dataset.
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2.6.3 Impact of Encoder Feature Layer

In Table 2.7 we experiment with using features from different feature layers from a

CNN (Resnet50 (He et al., 2016)) trained using supervision on Imagenet. The third

convolution layer performs best on all datasets, and so we use features from it in all

of our experiments for CNNs. For Transformer backbones (Kolesnikov et al., 2021;

Caron et al., 2021), we used the 9th layer as the initial features, as they were shown to

perform best in (Amir et al., 2022).

Layer Spair-71K SDogs CUB AFLW Awa

conv1 7.3 5.1 7.9 11.6 5.6

conv2 12.9 8.6 13.3 27.2 9.1

conv3 31.8 34.9 51.3 57.4 28.8

conv4 15.8 10.3 14.0 31.3 9.3

Table 2.7. Evaluation of using pre-trained features from different layers for the Resnet50

trained with Imagenet. The results here for conv3 correspond to the no projection model (i.e.,

‘None) from Table 2.2 (a).

2.6.4 Impact of Input Image Resolution

In Figure 2.7, we explore the impact of different input image resolutions, using pre-

trained embeddings without any projection (i.e., None), for CNN and Transformer

backbones. We used CNNs are from (He et al., 2016) and (Chen et al., 2021) as

the supervised and unsupervised CNN, (Kolesnikov et al., 2021) and (Caron et al.,

2021) as the supervised and unsupervised Transformer. Transformers scale well as the

number of tokens increases, while the performance of the CNNs saturates as the image

resolution is increased. We argue that this is due to the non-adaptive nature of the

receptive field sizes of CNNs which may overfit to the trained image resolution. As

CNNs best performed using an input resolution of 384x384, we use that resolution for

in our experiments. While 8x8 patches with stride 4 is the best-performing version for

transformers, due to computational constraints, we used 8x8 patches with stride 8 as

the transformer input in our experiments.



34 Chapter 2. Demystifying Unsupervised Semantic Correspondence Estimation

256 384 512 768
CNN Input Size (Width=Height)

30

32

34
PC

K
CNN
Transformer

16/16 16/8 8/8 8/4
Transformer Input Size (Patch/Stride)

(a) Supervised Pre-training

256 384 512 768
CNN Input Size (Width=Height)

28

30

32

34

PC
K

CNN
Transformer

16/16 16/8 8/8 8/4
Transformer Input Size (Patch/Stride)

(b) Unsupervised Pre-training

Figure 2.7. Semantic correspondence performance of CNNs and Transformers with different

input sizes on Spair-71K with no projection. Pre-trained features from models trained on Im-

agenet with (a) supervised or (b) unsupervised losses are used. Image resolution is fixed to

224x224 for the Transformers. Note that the effective resolution of feature maps from CNNs

and Transformers are not comparable for each vertical position in the plots.

2.6.5 Example Images and Qualitative Results

Random instance pairs from each dataset are depicted in Figure 2.8. Spair-71K con-

tains examples of different classes, spanning man-made objects to animal classes.

StanfordDogs (SDogs) contains different breeds of dogs in challenging poses with

varying appearances. CUB contains bird species. AFLW contains human faces which

occupy most of the frame. Unlike CUB and SDogs which only contain images from

one species, Awa includes different vertebrate animal categories which enables us to

assess inter-category correspondence performance.

We also present some qualitative results for the different unsupervised losses, for all

datasets, in Figure 2.9 and Figure 2.10. While ASYM generally improves the predic-

tions compared to other unsupervised losses, it still lags behind supervised projection

which makes use of ground truth matches for training. AFLW generally contains easy

examples with a small percentage of background pixels and only minor changes in

pose which makes the task easier. While the PCK scores for AFLW and CUB are close

to each other, as can be seen from qualitative results, this can be explained by how

PCK evaluates matches which does not necessarily reflect the difficulty of the dataset

in some cases.
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Spair SDogs CUB AFLW Awa

Figure 2.8. Examples from each of the datasets with the keypoint annotations that we consider

in our experiments. The top row illustrates a source instance and the bottom a target instance.

2.6.6 Visualizing Learned Feature Embeddings

We present 2d t-SNE (Van der Maaten and Hinton, 2008) visualizations of the key-

point embeddings for the AFLW, CUB, and SDogs datasets in Figure 2.12. Since

Spair contains different classes wherein the keypoints are not semantically consistent

across classes, we did not present a t-SNE visualization of Spair. Moreover, the Awa

dataset contains more than 30 keypoints which makes visualizing them difficult, thus

we exclude that as well. To create these plots, we first extracted embeddings from

only the keypoint locations. These are 1024 dimensional for the None projection and

256 for other unsupervised methods. We then project these embeddings to 2D using

t-SNE, and finally plot them. Each color represents a different keypoint type, which is

different depending on the dataset.

LEAD and ASYM look similar to the original feature space. One interesting thing

is that, CL manages to separate overlapping embeddings when compared to the ‘no

projection’ baseline on the AFLW dataset. This is reflected by their superior PCK

scores for this dataset. However, for CUB there are cases where it splits clusters of

keypoints which were a single prominent cluster in the original embeddings space.

This perhaps indicates that applying CL can sometimes destroy invariances that were

captured in the pre-trained features, thus leading to undesirable changes in the embed-

ding space.



36 Chapter 2. Demystifying Unsupervised Semantic Correspondence Estimation

(a) Source (b) ASYM (c) CL (d) DVE (e) Sup

Figure 2.9. Qualitative matching results. Each row is a different dataset: Spair, SDogs, CUB,

AFLW, and Awa, from top to bottom. The leftmost image for each row is a source example,

and the remaining images visualize matches from different unsupervised methods, where ’o’

indicates a ground truth location and ’x’ indicates a prediction. Overall, while ASYM cannot

match the performance of Supervised projection, it is better than other unsupervised methods.

For instance, in the AFLW example, only our proposed ASYM and supervised baseline are

able to precisely find correspondences for all keypoints.



2.6. Additional Ablation Experiments and Analysis 37

(a) Source (b) ASYM (c) CL (d) DVE (e) Sup

Figure 2.10. More qualitative matching results. Each row is a different dataset: Spair, SDogs,

CUB, AFLW, and Awa, from top to bottom. The leftmost image for each row is a source exam-

ple, and the remaining images visualize matches from different unsupervised methods, where

’o’ indicates a ground truth location and ’x’ indicates a prediction. For the Awa-Pose dataset

example in the bottom row, all of the methods struggle as visual diversity is high between in-

stances and the target example is in a different pose.
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(a) Source (b) ASYM (c) CL (d) DVE (e) Sup

Figure 2.11. More qualitative matching results. Each row is a different dataset: Spair, SDogs,

CUB, AFLW, and Awa, from top to bottom. The leftmost image for each row is a source exam-

ple, and the remaining images visualize matches from different unsupervised methods, where

’o’ indicates a ground truth location and ’x’ indicates a prediction. While most methods per-

form reasonably good on the AFLW dataset instance, the predictions for the highly articulated

objects (e.g., animals), even the supervised baseline cannot obtain satisfactory results.
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Figure 2.12. t-SNE visualization the embeddings learned by different unsupervised losses.

Each row is a different dataset, and the colors indicate the ground truth identity of different

keypoints.

2.7 Discussion and Limitations

Our exhaustive experiments show that evaluating with varied challenging datasets is

crucial in order to see the benefits of current methods as human face data results (e.g.,

AFLW) alone can be misleading (Table 2.2). While unsupervised performance may not

yet be at the level of fully supervised baselines, they are not far off but have the benefit

of generalizing better across datasets (Figure 2.4). Current performance metrics (i.e.,

PCK) do not penalize all error types and thus result in overly optimistic performance

(Table 2.3). The choice of pre-training can have a big impact, but in most instances,

Imagenet pre-training is superior (Figure 2.3).

It is not feasible to control all hyper-parameter values as the space is too large. As a

result, to ensure fair and controlled comparisons, we adopted a two-stage pipeline, with

frozen backbone models, as advocated in recent start-of-the-art work (Cheng et al.,

2021). While this two-stage approach simplifies training, it may limit adaptability and

overall performance due to restricted feature learning.

We justified the important design choices and provided additional ablation exper-

iments for the choices that we made. Finally, the keypoints used for evaluating cor-

respondence are derived from object landmarks which are detectable and salient by

design. In future work, it would be interesting to use additional annotations from

other object parts which are not necessarily easily annotated but still have semantically
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meaningful correspondences across instances.

2.8 Conclusion

We presented a thorough evaluation of existing unsupervised methods for semantic

correspondence estimation and presented a new approach that consistently outperforms

existing methods. We showed that while matching performance on human face data is

strong, there is still a way to go on more challenging datasets. Our analysis sheds light

on some of the reasons for failure as well as providing some further insight into the role

of data, models, and losses which we hope will enable others to make further progress

on this important task. Furthermore, the methods we studied do not incorporate explicit

shape information to inform semantic correspondence, which could be a promising

direction for future work.



Chapter 3

SAOR: Single-View Articulated 3D

Object Reconstruction

From our investigation of semantic correspondence in the previous chapter, it is appar-

ent that 3D shape information could provide valuable cues for improving correspon-

dence. The challenge of finding correspondences across images containing significant

variations in appearance, pose, and background is inherently tied to understanding ob-

ject structure. Without an explicit notion of shape, this task becomes considerably

harder.

To address this, we propose a general 3D reconstruction method that operates

across multiple animal categories. Crucially, our approach dispenses with conven-

tional 3D priors such as templates or skeletal models. Instead, it learns to infer shape

directly from 2D image collections, relying solely on 2D-derived supervision. While

this removes the need for 3D annotations, it also allows the model to generalize across

diverse object classes. We believe that such a shape estimation framework can offer a

more principled foundation for semantic correspondence and related vision tasks.

3.1 Introduction

Considered as one of the first PhD theses in computer vision, Roberts (Roberts, 1963)

aimed to reconstruct 3D objects from single-view images. Despite significant progress

in the preceding sixty years (Blanz and Vetter, 1999; Cashman and Fitzgibbon, 2012;

Kar et al., 2015; Kanazawa et al., 2018b), the problem remains very challenging, es-

pecially for highly deformable categories photographed in the wild, e.g., animals. In

contrast, humans can infer the 3D shape of an object from a single image by making

41
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use of priors about the natural world and familiarity with the object category present.

Some of these natural-world low-level priors can be explicitly defined (e.g., symme-

try or smoothness), but manually encoding and utilizing high-level priors (e.g., 3D

category shape templates) for all categories of interest is not a straightforward task.

Recently, multiple methods have attempted to learn 3D shape by making use of

advances in deep learning and progress in differentiable rendering (Loper and Black,

2014; Kato et al., 2018; Liu et al., 2019). This has resulted in impressive results for

synthetic man-made categories (Choy et al., 2016b; Kato et al., 2018; Wang et al.,

2018) and humans (Loper et al., 2015; Güler et al., 2018), where full or partial 3D

supervision is readily available. However, when 3D supervision is not available, the

reconstruction of articulated object classes remains challenging. This is due to factors

such as: (i) methods not modeling articulation (Kanazawa et al., 2018b; Kulkarni et al.,

2019a; Goel et al., 2020; Monnier et al., 2022), (ii) the reliance on category-specific

3D template (Kokkinos and Kokkinos, 2021a; Kulkarni et al., 2020; Zuffi et al., 2019)

or manually defined 3D skeleton supervision (Wu et al., 2023a,b; Li et al., 2024), or

(iii) requiring multi-view training data such as video (Wu et al., 2023a; Kokkinos and

Kokkinos, 2021a; Yang et al., 2021a).

In this chapter, we introduce SAOR, a novel self-supervised Single-view Articulated

Object Reconstruction method that can estimate the 3D shape of articulating object

categories, e.g., animals. We forgo the need for explicit 3D object shape or skeleton

supervision at training time by making use of the following assumption: objects are

made of parts, and these parts move together. Given a single input image, our pro-

posed method predicts the 3D shape of the object and partitions it into parts. It also

predicts the transformation for each part and deforms the initially estimated shape, in a

skeleton-free manner, using a linear skinning approach. We only require easy to obtain

information derived from single-view images during training, e.g., estimated object

silhouettes and predicted relative depth maps. SAOR is trained end-to-end, and out-

puts articulated 3D object shape, texture, 3D part assignments, and camera viewpoint.

Example qualitative results can be seen in Figure 3.7.

We make the following contributions: (i) We demonstrate that articulation can be

learned using image-based self-supervision alone via our new part-based SAOR ap-

proach which is trained on multiple categories simultaneously without requiring any

3D template or skeleton prior. (ii) As estimating the 3D shape of an articulated object

from a single image is an under-constrained problem, we introduce a cross-instance

swap consistency loss that leverages our disentanglement of shape deformation and
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articulation, in addition to a new silhouette-based sampling mechanism, that enhances

the diversity of object viewpoints sampled during training. (iii) We illustrate the effec-

tiveness of our approach on a diverse set of over 100 challenging categories covering

quadrupeds and bipeds, and present quantitative results where we outperform existing

methods that do not use explicit 3D supervision.

3.2 Related Work

Here we discuss works that attempt to estimate the 3D shape of an object in a single

image using image-based 2D supervision during training. We do not focus on works

that require explicit 3D supervision (Choy et al., 2016b; Kato et al., 2018; Wang et al.,

2018; Mescheder et al., 2019) or multi-view images for training (Yu et al., 2021; Jain

et al., 2021; Vasudev et al., 2022; Liu et al., 2023). We also do not cover methods

that only reconstruct single object instances (Mildenhall et al., 2021; Park et al., 2021;

Poole et al., 2023) or models for multi-object scenes (Niemeyer and Geiger, 2021). For

a recent overview of related topics, we refer readers to (Tretschk et al., 2022; Yunus

et al., 2024).

Deformable 3D Models. The pioneering work of Blanz and Vetter (Blanz and Vetter,

1999) marked the introduction of deformable models to represent the 3D shape of an

object category using vector spaces. By using 3D scans of human faces, they created

a deformable model which captured inter-subject shape variation and demonstrated

the ability to reconstruct 3D faces from unseen single-view images. This concept was

later expanded to more complex shapes such as the human body (Loper et al., 2015;

Anguelov et al., 2005), hands (Taylor et al., 2014; Khamis et al., 2015), and animals

(Zuffi et al., 2017).

Recent work has combined deep learning with 3D deformable models (Loper et al.,

2015; Zuffi et al., 2019; Biggs et al., 2020; Rueegg et al., 2022) to predict the shape of

articulated objects from single-view input images. Given an input image, these meth-

ods estimate the parameters of a known deformable 3D model and render the object

using the predicted camera viewpoint. Although this line of work has led to impres-

sive results for the human body (Loper et al., 2015), the results for deformable animal

categories are lacking (Zuffi et al., 2019; Biggs et al., 2020; Rueegg et al., 2022). This

is because popular human deformable models, e.g., SMPL (Loper et al., 2015), are

constructed using thousands of high-quality real human 3D scans. In contrast, animal

focused 3D models, e.g., SMAL (Zuffi et al., 2019), are generated using 3D scans from
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a small number of toy animals.

The above models are parameter-efficient due to their low dimensional shape pa-

rameterization, which facilitates easier optimization. However, beyond common cate-

gories, such as dogs (Rueegg et al., 2022), it can be prohibitively difficult to find 3D

scans for each new object category of interest. In this work, we eliminate the need for

prior 3D scans of objects by combining linear vertex deformation with a skeleton-free

(Liao et al., 2022) linear blend skinning (Lewis et al., 2000) approach to model the 3D

shape of articulated objects using only images at training time.

Unsupervised Learning of 3D Shape. To overcome the need for large collections of

aligned 3D scans from an object category of interest, there has been a growing body

of work that attempts to learn 3D shape using images from only minimal, if any, 3D

supervision. The common theme of these methods is that they treat shape estimation

as an image synthesis task during training while enforcing geometric constraints on the

rendering process.

One of the first object-centric deep learning-based methods to not use dense 3D

shape supervision for single-view reconstruction was CMR (Kanazawa et al., 2018b).

CMR utilizes camera pose supervision estimated from structure from motion, along

with human-provided 2D semantic keypoint supervision during training and a coarse

template mesh initialized from the keypoints. Subsequently, U-CMR (Goel et al.,

2020) removes the keypoint supervision by using a multi-camera hypothesis approach

which assigns and optimizes multiple cameras for each instance during training. IMR

(Tulsiani et al., 2020) starts from a category-level 3D template and learns to estimate

shape and camera viewpoint from images and segmentation masks. UMR (Li et al.,

2020c) enforces consistency between per-instance unsupervised 2D part segmentations

and 3D shape. They do not assume access to a 3D shape template (or keypoints) but

instead learn one via iterative training. SMR (Hu et al., 2021) also uses object part

segmentation from a self-supervised network as weak supervision. Shelf-SS (Ye et al.,

2021) uses a semi-implicit volumetric representation and obtains consistent multi-view

reconstructions using generative models similar to (Henzler et al., 2019). Like us, all

of these methods use object silhouettes (i.e., foreground masks) as supervision.

Recently, Unicorn (Monnier et al., 2022) combined curriculum learning with a

cross-instance swap loss to help encourage approximate multi-view consistency across

object instances when training a reconstruction network without silhouettes. Their

swap loss makes use of an online memory bank to select pairs of images that contain

similar shape or texture. The pairs are restricted to be observed from different esti-
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mated viewpoints. Then a consistency loss is applied which explicitly forces pairs to

share the same shape or texture. In essence, this is a form of weak multi-view supervi-

sion under the assumption that the shape of the object pair are the same. However, this

assumption breaks down for articulated objects. Inspired by this, we propose a more

efficient and effective swap loss designed for articulating objects.

There are also approaches that predict a mapping from image pixels to the surface

of a 3D object template as in (Güler et al., 2018; Neverova et al., 2020). CSM (Kulkarni

et al., 2019a) eliminates the need for large-scale 2D to 3D surface annotations via an

unsupervised 2D to 3D cycle consistency loss. The goal of their loss is to minimize

the discrepancy between a pixel location and a corresponding 3D surface point that is

reprojection based on the estimated camera viewpoint. In contrast, we do not require

any 3D templates or manually defined 2D annotations, such as keypoints, as they are

arduous to collect and not scalable.

Learning Articulated 3D Shape. Most natural object categories are non-rigid and can

thus exhibit some form of articulation. This natural shape variation between individual

object instances violates the simplifying assumptions made by approaches that do not

attempt to model articulation.

A-CSM (Kulkarni et al., 2020) extends CSM (Kulkarni et al., 2019a) by making

the learned mapping articulation aware. Given a 3D template of the object category,

they first manually define the parts of the object category and a hierarchy between the

parts. Then, given an input image, they predict transformation parameters for each

part so they can articulate the initial 3D template before calculating the mapping be-

tween the 3D template and the input pixels. Recently (Stathopoulos et al., 2023) show

that A-CSM can be trained with noisy keypoint labels. Instead of manually defin-

ing parts, (Kokkinos and Kokkinos, 2021a) initialize sparse handling points, predict

displacements for these points, and articulate the shape using differentiable Laplacian

deformation. However, each of these methods requires a pre-defined 3D template of

the object category.

DOVE (Wu et al., 2023a), LASSIE (Yao et al., 2022), and MagicPony (Wu et al.,

2023b) are recent methods that are capable of predicting the 3D geometry of articu-

lated objects without requiring a 3D category template shape. However, they require a

predefined category-level 3D skeleton prior in order to model articulating object parts

such as legs. While 3D skeletons are easier to define compared to full 3D shapes, they

still need to be provided for each object category of interest and have to be tailored

to the specifics of each category, e.g., the trunk of the elephant is not present in other
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quadrupeds. In the case of MagicPony (Wu et al., 2023b), in addition to the skeleton

and its connectivity, per-bone articulation constraints are also provided, which neces-

sitates more manual labor. Additionally, a single skeleton may be insufficient if there

are large shape changes exhibited across instances of the category.

MagicPony (Wu et al., 2023b) builds on DOVE (Wu et al., 2023a), by removing

the need for explicit video data during training. Inspired by UMR (Li et al., 2020c),

MagicPony makes use of weak correspondence supervision from a pre-trained self-

supervised network to enforce pixel-level consistency between 2D images and learned

3D shape. Concurrent to our work 3D-Fauna (Li et al., 2024) extends MagicPony for

quadrupeds in a multi-category setting. LASSIE (Yao et al., 2022) is another skeleton-

based approach that uses correspondence information from self-supervised features

and manually pre-defined part primitives. Like us, they model object parts, but their

goal is not to learn a model that can directly predict shape from a single image. Instead,

their approach learns instance shape from a set of images via test-time optimization. In

recent work, (Yao et al., 2023) automatically extracts the skeleton from a user-defined

canonical image, but still requires test-time optimization.

We train with single-view image collections, but there are also several works that

use video as a data source for modeling articulating objects (Li et al., 2020b; Wu

et al., 2023a; Yang et al., 2021a,b) and other methods that perform expensive test-

time optimization for fitting or refinement (Zuffi et al., 2019; Kokkinos and Kokkinos,

2021b; Li et al., 2020b; Wu et al., 2023b; Yao et al., 2022). In contrast, we only require

self-supervision derived from single-view images and our inference step is performed

efficiently via a single forward pass through a deep network.

3.3 Method

Our objective is to estimate the shape S, texture T , and camera pose (i.e., viewpoint) P

of an object from an input image I. To accomplish this, we employ a self-supervised

analysis-by-synthesis framework (Grenander, 1978; Kulkarni et al., 2015) which re-

constructs images using a differentiable rendering operation, denoted as Î =Π(S,T,P).

The model is optimized by minimizing the discrepancy between a real image I and the

corresponding rendered one Î. In this section, we describe how the above quantities

are estimated to ensure that the predicted 3D shape is plausible. An overview of the

generation phase of our method can be seen in Figure 3.1
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Figure 3.1. Overview of the generation phase of our SAOR method. Given a single image I

as input, we extract a global feature vector φim which is decoded by four separate networks

( fd , fa, ft , and fp) to generate a final output image Î. We start by deforming an initial sphere,

articulate it using a part-based linear blend skinning (LBS) operation ξ, texture the mesh, and

render it using a differential render Π so that it is depicted from the same viewpoint as the input

image. The parameters for each of the networks presented are trained in an end-to-end manner

using image reconstruction-based self-supervision from multiple different categories using the

same model.

3.3.1 SAOR Model

Taking inspiration from previous works (Kanazawa et al., 2018b; Ye et al., 2021; Mon-

nier et al., 2022), we initialize a sphere-shaped mesh with initial vertices S◦ with fixed

connectivity. We then extract a global image representation φim = fenc(I) ∈ RD using

a neural network encoding function. From this, we utilize several modules, described

below, to predict the shape deformation, articulation, camera viewpoint, and object

texture necessary to generate the final target shape.

Shape. We predict the object shape by deforming and articulating an initial sphere

mesh S◦ = {sss◦n}N
n . Here, each of the N elements of S◦ are 3D coordinates. We estimate

the vertices of the deformed shape using a deformation function sss′i = sss◦i + fd(sss◦i ,φim),

which outputs the displacement vector for the initial points. The deformation function

fd is modeled as a functional field, which is a 3-layer MLP similar to (Niemeyer and

Geiger, 2021; Monnier et al., 2022). As most natural objects exhibit bilateral sym-

metry, similar to (Kanazawa et al., 2018b), we only deform the vertices of the zero-

centered initial shape that are located on the positive side of the xy-plane and reflect

the deformation for the vertices on the negative side. We then articulate the deformed

shape using linear skinning (Lewis et al., 2000) in a skeleton-free manner (Liao et al.,

2022) to obtain the final shape S = ξ(S′,A), where A is the output of our articulation

prediction function, which we describe in more detail later in Section 3.3.2.

Texture. To predict the texture of the object, we generate a UV image by transforming

the global image feature, T = ft(φim). The function ft is implemented as a convolu-



48 Chapter 3. SAOR: Single-View Articulated 3D Object Reconstruction

tional decoder, which maps a one-dimensional input representation to a texture map,

ft : RD 7→ RH×W×3. This approach is similar to previous works (Monnier et al., 2022;

Niemeyer and Geiger, 2021). However, unlike existing work (Kanazawa et al., 2018b;

Li et al., 2020c) that copy the pixel colors of the input image directly to create a texture

image using a predicted flow field, we predict texture directly. In initial experiments,

we found that estimating texture flow only gave minimal improvements, for an increase

in complexity.

Camera Pose. We use Euler angles (azimuth, elevation, and roll) along with camera

translation to predict the camera pose, similar to previous works (Goel et al., 2020;

Monnier et al., 2022). Instead of using multiple camera hypotheses for each input

instance (Monnier et al., 2022), for each forward pass, or optimizing them for each

training instance (Goel et al., 2020), we use several camera pose predictors, but only

select the one with the highest confidence score for each forward pass, as described in

(Wu et al., 2023b). Specifically, we predict the camera pose as P∈R6 = fp(φim). Here,

P = rrrp, ttt p represents the predicted camera rotation and translation. This approach ac-

celerates the training process and reduces memory requirements since we only need

to compute the loss for one camera in each forward pass. We only incorporate pri-

ors about the ranges of elevation and roll predictions, instead of a strong uniformity

constraint on the distribution of the camera poses as in (Monnier et al., 2022) or fixed

elevation as in (Wu et al., 2023b).

We describe how the entire system is trained, including the loss functions in Sec-

tion 3.3.4, and further implementation details in Section 3.3.5.

3.3.2 Skeleton-Free Articulation

Many natural world object categories exhibit some form of articulation, e.g., the legs

of an animal. Existing work has attempted to model this via deformable 3D template

models (Rueegg et al., 2022) or by using manually defined category-level skeleton

priors (Wu et al., 2023a,b). However, this assumes one has access to category-level 3D

supervision during training. This would be difficult to obtain in our setting as we train

on over 100 categories simultaneously. We instead propose a skeleton-free approach

by modeling articulation using a part-based model. Our approach is inspired by (Liao

et al., 2022), who proposed a related skeleton-free representation for the task of pose

transfer between 3D meshes for the human body. However, in our case, we train a

model that can predict parts in an image from self-supervision alone.
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Our core idea is to partition the 3D shape into parts and deform each part based

on predicted transformations. These parts are modeled as mechanically rigid segments

that move together, each governed by a common transformation. To achieve this, we

predict a part assignment matrix W ∈ RN×K , that represents how likely it is that a

vertex belongs to a particular part, where ∑
K
k Wi,k = 1. Here, K is a hyperparameter

that represents the number of parts and N is the number of vertices in the mesh. We

also predict transformation parameters πππ = {(zzzk,rrrk, tttk)}K
k for each part which consists

of scale zzzk ∈R3, rotation rrrk ∈R3×3, and translation tttk ∈R3. Each of these parameters

are predicted using different MLPs that take the global image feature φim as input and

output fa(S◦,φim) = A = {W,πππ}.

Articulation can be applied to a shape using a set of deformations using the linear

blend skinning equation (Jacobson et al., 2014). Here, each vertex needs to be associ-

ated with deformations by the skinning weights. In previous works (Wu et al., 2023a;

Yao et al., 2022; Wu et al., 2023b), skinning weights are calculated using a skeleton

prior (e.g., a set of bones and their connectivity). We instead estimate skinning weights

using a part-based model that does not require a prior skeleton or any ground truth part

segmentations. We first calculate the centers for each part from the vertices of the

deformed shape sss′i ∈ S′,

  \bm {c}_{k} = \frac {\sum ^{N}_{i} \bm {s}'_{i} * W_{i,k}}{\sum ^{N}_{i} W_{i,k}}. 



 





 (3.1)

The final position of a vertex sssi for the final shape S is then calculated using the skin-

ning weight of the vertex and estimated part transformations as

  \bm {s}_{i} = \sum ^{K}_{k} W_{i,k} \bm {z}_{k} \odot (\bm {r}_{k} (\bm {s}'_{i} - \bm {c}_{k}) + \bm {t}_{k}), 





      (3.2)

where zzzk, rrrk, and tttk are the predicted scale, rotation, and translation parameters cor-

responding to part k and ⊙ is an element-wise multiplication. In addition to the re-

construction losses, we apply regularization on the part assignment matrix W that en-

courages the size of each part segment to be similar for each instance. As each of the

above operations are differentiable, articulation is learned via self-supervised without

requiring any 3D template shapes (Kulkarni et al., 2020), predefined skeletons (Wu

et al., 2023b), or part segmentations (Li et al., 2020c).
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Figure 3.2. Illustration of our articulated swap loss. To calculate the loss, a swap image Îsw
i is

rendered using a randomly chosen paired image’s shape S′j, combined with estimated texture,

viewpoint, and articulation (Ti,Pi,Ai) from the input image Ii. It ensures that 3D predictions are

not degenerate and helps disentangle deformation and articulation.

3.3.3 Swap Loss and Balanced Sampling

One of the hardest challenges in single-view 3D reconstruction is the tendency to pre-

dict degenerate solutions as a result of the ill-posed nature of the task (i.e., an infinite

number of 3D shapes can explain the same 2D input). Examples of such failure cases

include models predicting flat 2D textured planes which are visually consistent when

viewed from the same pose as the input image but lack full 3D shape (Monnier et al.,

2022). To mitigate these issues, and to ensure multi-view consistency of our 3D re-

constructions, we build on the swap loss idea recently introduced in (Monnier et al.,

2022).

To estimate their swap loss, (Monnier et al., 2022) take a pair of images (Ii, I j) that

depict two different instances of the same object category, and estimate their respec-

tive shape, texture, and camera pose, ({Si,Ti,Pi}, {S j,Tj,Pj}). They then generate an

image Îsw
i = Π(S j,Ti,Pi) by swapping the shape encodings Si and S j, where Π is a

differentiable renderer. Finally, they estimate the appearance loss between Ii and Îsw
i

which aims to enforce cross-instance consistency. The intuition here is that the shape

from I j and texture from Ii should be sufficient to describe the appearance of Ii, even

though I j is potentially captured from a different viewpoint.

In (Monnier et al., 2022), the shapes Si and S j should be similar, while the predicted

viewpoints Pi and Pj should be different to get a useful ‘multi-view’ training signal.

To obtain similar shapes, they store latent shape codes in a memory bank which is
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queried online via a nearest neighbor lookup. This memory bank is updated at each

iteration for the selected shape codes using the current state of the network. Moreover,

they limit the search neighborhood based on the predicted viewpoints to ensure that

they obtain some viewpoint variation, i.e., in (Monnier et al., 2022) the viewpoints

Pi and Pj should not be too similar, or too different. While this results in plausible

predictions for mostly rigid categories such as birds and cars, for highly articulated

animal categories it can lead to degenerate solutions due to more variety in terms of

shape appearance, as can be seen in Figure 3.8.

Swap Loss. To address this issue, we introduced a straightforward but more effective

swap loss that generalizes to articulated object classes. Our hypothesis is that given a

set of images that contain a variety of viewpoints exhibiting disentangled deformation

and articulation, we can use randomly chosen image pairs to calculate the swap loss.

Since we model the articulation along with the deformation to obtain the final shape,

articulation can be used to explain the difference between shapes. In our proposed

loss, we swap random deformed shapes S′i and S′j from instances of the same object

category, but use the original estimated articulation Ssw = ξ(S′j,Ai) and reconstruct the

swap image Îsw
i = Π(Ssw,Ti,Pi) to calculate the swap loss Lswap(Ii, Îsw

i ). Our loss is

illustrated in Figure 3.2. This loss also helps in cases of occlusion, as the model must

reason about the occluded regions to minimize the loss with the swapped image, where

the same area may not be occluded.

Balanced Sampling. For our swap loss to be successful, it requires the selected image

pairs to ideally be from different viewpoints. To obtain informative image pairs, we

propose an image sampling mechanism which makes use of the segmentation masks

of the input images. Before training, we cluster predicted segmentation masks of the

training images and then during training, we sample images from each cluster uni-

formly to form batches. This ensures that each batch includes the object of interest de-

picted from different viewpoints. In Figure 3.3 we can see that cluster centers mostly

capture the rough distribution of viewpoints and thus help stabilize training. As our

image pairs (Ii, I j) are sampled from within the same batch during training, this results

in varied images from different viewpoints for the swap loss. Combined, our swap

and balanced sampling steps drastically simplifies the swap loss from (Monnier et al.,

2022) and improves reconstruction quality and training stability on articulated classes.
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Figure 3.3. (Top) A subset of the resulting cluster centers that arise from clustering the object

segmentation masks. (Bottom) Representative images from each of the clusters above. We can

see that our simple clustering operation captures the main viewpoint variations present in the

data, e.g., left-facing, frontal, right-facing, etc.

3.3.4 Optimization

Given an input image, I, we reconstruct it as Î using estimated shape, texture, and

viewpoint. In addition, we use the swapped shape to predict another image Îsw and

calculate the swap loss, as discussed in Section 3.3.3. We also use differentiable ren-

dering to obtain a predicted object segmentation mask and depth derived from the

predicted 3D shape, M̂ and D̂ respectively. Our model is trained using a combination

of the following losses,

  \mathcal {L} = \mathcal {L}_{appr} + \mathcal {L}_{mask} + \mathcal {L}_{depth} +\mathcal {L}_{swap} + \mathcal {L}_{reg}.       (3.3)

The appearance loss, Lappr(I, Î), is an RGB and perceptual loss (Zhang et al.,

2018a), Ldepth(D, D̂) is the translation and shift-invariant depth loss introduced in

(Ranftl et al., 2021), and Lmask(M,M̂) estimates silhouette discrepancy. To avoid de-

generate solutions, we use Lswap(I, Îsw) and regularize predictions using Lreg, which

encourages smoothness (Desbrun et al., 1999) and normal consistency on the predicted

3D shape along with a uniform distribution on the part assignment. While we use pre-

dicted segmentation masks and relative depth during training, at test time, our model

only requires a single image. Below, we describe the training losses in detail.

The appearance loss is a combination of an RGB and perceptual loss (Zhang et al.,

2018a). Lappr = λrgbLrgb +λpercpLpercp. These terms are defined below,

  \mathcal {L}_{rgb} = || \sum _{i,j} I_{i,j} - \hat {I}_{i,j} ||_{2},  


     (3.4)



3.3. Method 53

  \mathcal {L}_{percp} = || \phi _{p}(I_{i,j}) - \phi _{p}(I_{i,j}) ||_{2},      (3.5)

where φp is a function that extracts features from different layers of the VGG-16 (Si-

monyan and Zisserman, 2015) network.

The mask loss is calculated based on the difference between the automatically gen-

erated ground truth segmentation mask M and the estimated mask M̂ derived from our

predicted 3D shape,

  \mathcal {L}_{mask} = \lambda _{mask} \sum _{i,j} ||M_{i,j} - \hat {M}_{i,j}||_{2}.   


     (3.6)

Likewise, the depth loss is computed using the automatically generated relative depth

D and the estimated depth D̂ from the predicted shape,

  \mathcal {L}_{depth} = \lambda _{depth}\sum _{i,j} ||D_{i,j} - \hat {D}_{i,j}||_{2}.   


     (3.7)

Our swap loss is a combination of the RGB and mask loss between the input image

I and swapped image Isw,

  \mathcal {L}_{swap} = \lambda _{swap}\left [ \mathcal {L}_{mask}(I, I^{sw}) + \mathcal {L}_{rgb}(I, I^{sw})\right ].  

 


 (3.8)

Finally, we also employ part regularization on the part assignment matrix W to

encourage equal-sized parts,

  \mathcal {L}_{part} = \lambda _{part}\sum _{k}^{K} \left ((\sum _{i}^{N} W_{i,k}) - N/K\right )^2,  


















 (3.9)

where N is the number of vertices in the mesh and K is the number of parts.

We also apply 3D regularization on the 3D shape,

  \mathcal {L}_{smooth} = \lambda _{smooth}\sum _{}LS     (3.10)

where L is the laplacian of shape S and Lnormal which is defined below,

  \mathcal {L}_{normal} = \lambda _{normal} \sum _{\bf {n_{i}}, \bf {n_{j}}} 1 - \frac {\bf {n_{i}}.\bf {n_{j}}}{||\bf {n_{i}}|| . ||\bf {n_{j}}||}.   






 (3.11)

Here, ni, n j are normals of neighbor faces, and the smoothness regularization is defined

as λsmoothLsmooth = ||LV ||, where L is the Laplacian operator on the vertices. The final

regularization term is defined as,

  \mathcal {L}_{reg} = \lambda _{part} \mathcal {L}_{part} \newline + \lambda _{smooth} \mathcal {L}_{smooth} + \lambda _{normal} \mathcal {L}_{normal}.     (3.12)
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3.3.5 Implementation Details

We employ a ResNet (He et al., 2016) as our global encoder, fenc, and perform end-to-

end training using Adam (Kingma and Ba, 2014). Object masks M and depths D are

obtained for training by utilizing off-the-shelf pre-trained networks. To implement all

3D operations in our model we use the Pytorch3D framework (Ravi et al., 2020) using

their default mesh rasterization (Liu et al., 2019) which is differentiable and enables

end-to-end training. Prior to being passed to the model, images are resized to 128x128

pixels. We disable articulation for the first 100 epochs when training a model from

scratch, and continue training models for another 100 epochs by enabling deformation

and articulation jointly. The lightweight design of our proposed method enables the

estimation of the final shape, articulation, texture, and viewpoint in approximately 15

ms per image. We provide more details regarding architecture, hyperparameters, and

optimization in Appendix A.

3.4 Experiments

Here, we present results on multiple quadruped and biped animal categories, providing

both quantitative and qualitative comparisons to previous work.

3.4.1 Data and Pre-Processing

For our experiments, we trained two models: SAOR-Bird and SAOR-101. The bird

model is trained from scratch using the CUB (Wah et al., 2011) dataset following

the original train/test split. SAOR-101, the general animal model, is trained on 101

animal categories that contain birds, quadrupeds, and bipeds. This model is first trained

using only horse images from the LSUN (Yu et al., 2015) dataset with an additional

500 front-facing horse images from iNaturalist (iNaturalist, 2023), as LSUN mostly

contains side-view images of horses. Then, as in (Wu et al., 2023b), we finetune the

horse model on a new dataset that we collected from iNaturalist (iNaturalist, 2023)

which contains 90k images from 101 different animal classes. Sample images from

our newly collected dataset are shown in Figure 3.4

When constructing our training datasets, we run a general-purpose animal detector

(Beery et al., 2019) and eliminate objects if any of the following criteria hold: i) the

confidence of the detection is less than 0.8, ii) the minimum side of the bounding box is

less than 32 pixels, iii) the maximum side of the bounding box is less than 128 pixels,



3.4. Experiments 55

Figure 3.4. Sample images from our training dataset, showcasing a diverse set of animal cate-

gories under challenging conditions. The dataset includes variations in occlusion, articulation,

viewpoint, and appearance, as well as differences in skeletal topology, such as bipeds and

quadrupeds.

and iv) there is no margin greater than 10 pixels on all sides of the bounding box. We

then automatically extract segmentation masks using the Segment Anything Model

(Kirillov et al., 2023) with the detected bounding box. We automatically estimate the

relative monocular depth using the transformer-based Midas (Ranftl et al., 2021, 2022),

using their Large DPT model.

To obtain cluster centers for the balanced sampling step in Section 3.3.3, we re-

size the estimated segmentation masks to 32× 32, and cluster the 1024-dimensional

vectors into 10 clusters using a Gaussian mixture model in all of our experiments.

Visualization of cluster centers of various animals can be found in Figure 3.5.

3.4.2 Quantitative Results

To compare to existing work, we quantitatively evaluate using the 2D keypoint transfer

task, which reflects the quality of the estimated shape and viewpoint, and 3D evaluation

which reflects how predicted and ground truth depth is aligned. We report results using

the PCK metric with a 0.1 threshold for the keypoint transfer task, not the PCK† and

other detailed error metrics introduced in the previous chapter, as those metrics are

related to semantic understanding whereas here the goal is geometric understanding.

Furthermore, we use normalized L1 Chamfer distance for 3D evaluation.

Birds. Keypoint transfer results on CUB (Wah et al., 2011) are presented in Table 3.1

both for all bird classes and the non-aquatic subset as in (Wu et al., 2023b). Our method

obtains the best results out of methods that do not use keypoint supervision, 3D object
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Figure 3.5. Visualization of the cluster centers obtained from estimated silhouettes of various

animal categories used in our balanced sampling. We observe that these cluster centers broadly

capture the dominant viewpoints of each object category. Top to bottom: horse, giraffe, ele-

phant, zebra, and bird.

priors (e.g., 3D templates or skeletons (Wu et al., 2023a,b)), or additional data (e.g.,

(Wu et al., 2023a,b)).

Quadrupeds. Keypoint transfer results for quadruped animals from the Pascal dataset

(Everingham et al., 2015) are presented in Table 3.2. As noted earlier, we trained the

horse model from scratch, while the other models were finetuned using data from iNat-

uralist (iNaturalist, 2023). For the Unicorn (Monnier et al., 2022) baseline, we used

their pre-trained model which was also trained on LSUN horses. For the remaining

categories, we also finetuned their model in a similar fashion to ours. Our method out-

performs CSM (Kulkarni et al., 2019a) and its articulated version A-CSM (Kulkarni

et al., 2020), which use a 3D template of the object category and 3D part segmen-

tation for the horse and cow category. Moreover, our method achieved significantly

better scores than Unicorn (Monnier et al., 2022), which produces degenerate (i.e.,

flat) shape predictions for these classes (see Figure 3.8). We visualize some keypoint

transfer results in Figure 3.6.

We also present 3D evaluation using results using Animal3D dataset (Xu et al.,

2023) on a few quadruped categories in Table 3.3. The dataset includes pairs of input

images with their corresponding 3D models, which are estimated via optimizing the

SMAL (Zuffi et al., 2017) model. Moreover, the 3D models are manually verified to
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Supervision Method all w/o aqua

�∗, @, , � CMR (Kanazawa et al., 2018b) 54.6 59.1

�∗, @ U-CMR (Goel et al., 2020) 35.9 41.2

♂, @∗,�, �∗ DOVE (Wu et al., 2023a) 44.7 51.0

♂, @∗,�, † MagicPony (Wu et al., 2023b) 55.5 63.5

@ CMR (Kanazawa et al., 2018b) 25.5 27.7

@, SCOPS∗ UMR (Li et al., 2020c) 51.2 55.5

None Unicorn (Monnier et al., 2022) 49.0 53.5

@∗, �∗ SAOR-Bird 51.9 57.8

Table 3.1. Keypoint transfer results on CUB (Wah et al., 2011) using the PCK metric with 0.1

threshold (higher is better). � 3D template shape, ♂ 3D skeleton, � camera viewpoint,  2D

keypoints, @ segmentation mask, � optical flow, � video, � DINO features, SCOPS part

segmentation, and � monocular depth. † also uses additional video frames from (Wu et al.,

2023a). The initial 3D template in (Kanazawa et al., 2018b; Goel et al., 2020) is derived from

2D keypoints. ∗ indicates that the supervision is predicted, hence it is weak supervision. We

obtain the best results for methods that do not use 3D templates (�), skeletons (♂), or extra

data during training in addition to CUB (e.g., (Wu et al., 2023a,b)).

Supervision Method Horse Cow Sheep

@ Dense-Equi (Thewlis et al., 2017a) 23.3 20.9 19.6

@, � CSM (Kulkarni et al., 2019a) 31.2 26.3 24.7

@, � A-CSM (Kulkarni et al., 2020) 32.9 26.3 28.6

None Unicorn (Monnier et al., 2022) 14.9 12.1 11.0

♂, @∗,�, † MagicPony (Wu et al., 2023b) 42.9 42.5 26.2

@∗, �∗ SAOR-101 44.9 33.6 29.1

Table 3.2. Keypoint transfer results for quadruped animals.
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Source Src. Rec. Trg. Rec. KP Transfer

Figure 3.6. Keypoint transfer results. Our model captures articulation and viewpoint differ-

ences between images.

Supervision Method Horse Cow Sheep

None Unicorn (Monnier et al., 2022) 0.091 0.118 0.134

♂, @∗,�, † MagicPony (Wu et al., 2023b) 0.046 0.040 -

@∗, �∗ SAOR-101 0.046 0.043 0.045

Table 3.3. 3D evaluation on the Animal3D dataset (Xu et al., 2023) using normalized L1

Chamfer error, where lower is better.

eliminate poorly estimated shapes.

The dataset includes pairs of input images with their corresponding 3D We used the

test split of the dataset for the horse, cow, and sheep categories. As there is no global

pose alignment between our predictions and the dataset, we run the ICP algorithm to

align them. We optimize rotation, R ∈ R 3, translation T ∈ R 3, and global scale s ∈ R 1

with the Adam optimizer (Kingma and Ba, 2014) using L1 norm as our alignment

objective. We also follow the same alignment steps for the baselines. SAOR obtains

better results than Unicorn (Monnier et al., 2022) and similar results to MagicPony

(Wu et al., 2023b), while being category agnostic.
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Input Pose Reconstruction Parts

Figure 3.7. SAOR capable of predicting the 3D shape of an articulated object category

from a single image. Our model is trained on multiple categories simultaneously using self-

supervision on single-view image collections. It can efficiently predict object pose, 3D shape

reconstruction, and unsupervised part-level assignment using only a single forward pass per

image at test time in a category-agnostic way.
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Method Horse Cow Sheep Bird

Ours 44.9 33.6 29.1 51.9

Ours w/o depth 42.4 30.1 26.8 49.9

Ours w/o swap 30.8 17.7 18.4 44.5

Ours w/o sampling 27.5 20.1 18.3 38.8

Ours w/o articulation 26.3 19.4 17.9 41.7

Table 3.4. Keypoint transfer ablation results for SAOR where we disable individual compo-

nents to measure their impact.

3.4.3 Ablation Experiments

Components. To provide insight into the impact of our proposed model components,

we provide ablation experiments on Pascal for quadrupeds and on CUB for birds in

Table 3.4. While depth information helps to improve results, we can see that our

articulation and swap modules are significantly more important. Our model trained

without the swap loss obtains reasonable keypoint matching performance for birds but

produces degenerate flat plane-like solutions and fails miserably for quadrupeds. The

performance also drops if articulation is not utilized. This is because we choose ran-

dom pairs for the swap loss (unlike (Monnier et al., 2022)’s more expensive pair selec-

tion), and thus only viewpoint changes can be used to explain the difference between

images.

Part Ablations. We also conducted an additional ablation experiment on the number

of parts used for horses. Results are provided in Table 3.5. Notably, the PCK scores

do not significantly vary with different numbers of parts. Therefore, for all other ex-

periments, we used 12 parts.

Number of Parts 6 12 24

PCK 43.8 44.9 44.1

Table 3.5. Keypoint transfer results on Pascal horses (Everingham et al., 2015) where the

number of parts are varied.
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Input SAOR-101 Unicorn Monnier et al. (2022)

SAOR-101 UMR Li et al. (2020c)

Figure 3.8. Comparison of our model to Unicorn Monnier et al. (2022) and UMR Li et al.

(2020c) on horses. Compared to UMR which predicts thin shapes with two legs, we can re-

construct multi-view consistent results with four legs. Unicorn fails to produce 3D consistent

shapes.

3.4.4 Qualitative Results

Comparison with Previous Work. We compare SAOR with methods that do not use

any 3D shape priors (i.e., Unicorn (Monnier et al., 2022) and UMR (Li et al., 2020c))

and methods that use a 3D skeleton prior (i.e., MagicPony (Wu et al., 2023b)). A

comparison of shape predictions for horses can be seen in Figure 3.8 and Figure 3.9.

While Unicorn produces reasonable reconstructions from the input viewpoint, their

predictions are flat from the side. UMR also predicts thin 3D shapes and does not

generate four legs. Our method reconstructs multi-view consistent 3D shapes, with

prominent four legs.

In general, our method produces similar results to MagicPony. However, Mag-

icPony’s hybrid volumetric-mesh representation requires an extra transformation from

implicit to explicit representation using (Shen et al., 2021) and requires multiple ren-

dering operations to estimate the final shape. Moreover, the texture predictions of our

methods do not require test-time optimization.

We also compared SAOR’s surface estimates with A-CSM (Kulkarni et al., 2020)

in Figure 3.10. Unlike A-CSM, our method does not use any 3D parts or 3D shape

priors but is still able to capture finer details like discriminating left and right legs.

A-CSM groups left and right legs as a single leg while their reference 3D template has
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Input SAOR-101 MagicPony Wu et al. (2023b)

Figure 3.9. Comparison of our model to MagicPony Wu et al. (2023b) (without texture refine-

ment) which uses a category-specific skeleton prior during training. We obtain on-par recon-

structions compared to MagicPony without using any 3D prior on the articulation of the object

class and with a simpler and more efficient architecture.

left and right legs as a separate entity. Moreover, it mixes left-right consistency if the

viewpoint changes.

Deformation and Articulation Disentanglement. In Figure 3.11, we illustrate the

disentanglement of articulation and deformation learned by our model. Given two

images depicting differently articulating instances, we interpolate the deformation and

articulation features between them to visualize reconstructions. While interpolating

the articulation feature changes the result, changing the deformation feature does not,

as the shape difference between both images can be explained via articulation changes.

Part Consistency. After finetuning the pre-trained horse model on different quadruped

categories, we observe that the predicted part assignments stay consistent across cate-

gories, as can be seen in Figure 3.7. For instance, although the shapes of giraffes and

elephants are significantly different, our method is able to assign similar parts to sim-

ilarly articulated areas. Here, each color represents the part that is predicted with the

highest probability from the part assignment matrix W by the articulation network fa.

Out-of-Distribution Images. We illustrate the generalization capabilities of our model

by predicting 3D shapes from non-photoreal images, e.g., drawings. Figure 3.12 shows
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A-CSM Kulkarni et al. (2020)

SAOR-101

Figure 3.10. Comparison with A-CSM Kulkarni et al. (2020) on horses using example images

from their paper. Even though A-CSM uses a 3D template with pre-defined fixed parts, it still

maps left and right legs to the same leg in the template and the legs are not consistent across

viewpoints (i.e., the part assignment is different in the top row depending on whether the horse

is facing left or right. In contrast, despite not using any 3D object priors at training time, our

method is much more consistent in its assignment. However, it does mistake one of the left

legs for the horse’s tail in the final column.
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Figure 3.11. Disentanglement of articulation and deformation. On top, we interpolate articula-

tion latent features between a source and target image, and on the bottom do the same for shape

deformation features. λ = 1 indicates that original features are used for reconstruction, while

λ = 0 indicates the target ones. We can see that the difference between the reconstructions is

explained by articulation changes between the source and target image pairs.

Figure 3.12. Our model, trained on real-world images, plausibly estimates 3D shape and view-

point from different domains, e.g., cartoons, line drawings, and paintings.

that we can reconstruct plausible shapes and poses from input images that are very dif-

ferent from the training domain.

Without Depth. We also demonstrate examples from a variant of our model that was

trained without using relative depth map supervision in Figure 3.13. We observe that

this model is still capable of estimating detailed 3D shapes with accurate viewpoints

and similar textures as the full model. However, the model trained without depth maps

tends to produce wider shapes compared to the full model. This shows that, while not

crucial, depth provides important spatial cues that help the model generate more accu-

rate 3D shapes. Quantitative results for our model without relative depth are available

in Table 3.4.

Additional Qualitative Results. In Figure 3.14 and Figure 3.15, we present addi-

tional qualitative results on various animal categories all generated using our SAOR
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Input Pose Reconstruction Parts

Figure 3.13. Comparison of models trained with relative depth supervision (top) and without

(bottom). Our model trained without depth also estimates detailed 3D shapes with the correct

viewpoint. However, the 3D predictions are marginally worse as the model without depth

produces slightly wider 3D shapes. Please note that part assignment and pose orientation are

different since the two models started from different random initializations.
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models that are trained on multiple categories. We provide additional results show-

ing full 360-degree predictions for multiple different categories on the project website:

mehmetaygun.github.io/saor.

3.5 Discussion and Limitations

Although our proposed approach is able to estimate plausible 3D shapes, the texture

predictions are still not fully realistic. This could be improved using test-time re-

finement similar to (Wu et al., 2023b) or alternative texture representations. During

training, our method uses estimated silhouettes and relative depth maps as supervi-

sion. Both depth maps and silhouettes come from generic pre-trained models (Ranftl

et al., 2022; Kirillov et al., 2023), hence are free to acquire.

Finally, our method fails to predict accurate shape if the input images contain un-

usual viewpoints that differ significantly from the training images or if the object is

not fully visible. We showcase some failure cases of our method in Figure 3.16. Our

method fails when the animal is captured from the back, as there is insufficient data

available from that angle in the training sets. Note, methods such as (Wu et al., 2023b)

partially address this by using alternative training data that includes image sequences

from video. Furthermore, when there is also partial visibility (e.g., only the head is

visible), our method produces less meaningful results as our architecture does not ex-

plicitly model occlusion.

3.6 Conclusion

We presented SAOR, a new approach for single-view articulated object reconstruction.

SAOR is capable of predicting the 3D shape of articulated object categories without

requiring any explicit object-specific 3D information, e.g., 3D templates or skeletons,

at training time. To achieve this, we learn to segment objects into parts which move

together and propose a new swap-based regularization loss that improves 3D shape

consistency in addition to simplifying training compared to competing methods. These

contributions enable us to simultaneously represent over 100 different categories, with

diverse shapes, in one model.

mehmetaygun.github.io/saor
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Input Pose Reconstruction Parts Input Pose Reconstruction Parts

Figure 3.14. Additional qualitative results for our SAOR approach on various different animal

categories. Note that the part assignment displays the part with the highest probability for each

vertex, but in practice, the articulation for each vertex can be explained by a linear combination

of multiple parts.
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Input Pose Reconstruction Parts Input Pose Reconstruction Parts

Figure 3.15. Additional qualitative results for our SAOR approach on various different animal

categories. Note that the part assignment displays the part with the highest probability for each

vertex, but in practice, the articulation for each vertex can be explained by a linear combination

of multiple parts.
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Input Pose Reconstruction Parts MagicPony Wu et al. (2023b)

Figure 3.16. Failure cases on cows. On the left we see SAOR-101 predictions (estimated pose,

original viewpoint reconstruction, different view, and estimated parts). On the right we dis-

play MagicPony Wu et al. (2023b) (original viewpoint reconstruction, textured reconstruction,

different view). When the pose is very different than the typical ones present in the training

set (top) or there is too much occlusion (bottom) our method fails to produce a sensible shape

estimate. For the first example, MagicPony fails to capture the articulation of the head, and for

the second occluded example it predicts an average template shape with the wrong pose.





Chapter 4

Enhancing 2D Representation

Learning with a 3D Prior

Our exploration of semantic correspondence in Chapter 2 underscored the difficulty of

aligning semantically similar regions without a clear understanding of 3D shape. This

realization led to the development of a general 3D reconstruction method in Chapter 3,

emphasizing the importance of learning shape directly from 2D images without relying

on explicit 3D priors. Building on these insights, here we investigate how incorporat-

ing 3D priors into self-supervised learning can further improve visual representation

learning. In our case, a 3D prior refers to a learned model or system that encodes an

implicit or explicit understanding of object geometry, enabling the reconstruction of

objects in 3D space.

We introduce a novel approach that integrates 3D shape information into self-

supervised frameworks, encouraging models to learn more shape-biased representa-

tions. By emphasizing the role of structure in visual learning, this method enhances

robustness for semantic tasks like image recognition. Our results suggest that incorpo-

rating 3D priors can improve the perceptual alignment of machine vision with human

understanding, advancing machine perception toward human-level competence.

4.1 Introduction

The visual stimuli processed by a binocular, actively moving, human observer pro-

vides direct information about the 3D world around them (Gibson, 1950). As a result,

humans have a remarkable ability to perceive useful 3D shape cues, enabling them to

interact and navigate adeptly in complex environments. Most impressively, the power

71
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(a) (b) (c)

Figure 4.1. Humans have no difficulty in recognizing the categories depicted in the above

images, even though the texture of the objects has been perturbed. This is thought to be in

large part due to our reliance on shape, as opposed to texture, cues (Landau et al., 1988; Spelke

and Kinzler, 2007; Geirhos et al., 2019). However, an automated recognition system built on

top of a state-of-the-art self-supervised representation learning approach (i.e., DINOv2 (Oquab

et al., 2024)) classifies these examples as dog, chair, and knife respectively, as the texture

of the images resembles those object classes. We introduce a new approach to improve the

robustness of self-supervised methods using a proxy 3D reconstruction task which encourages

representations that emphasize shape cues more. As a result, our approach correctly predicted

these examples as (a) bear, (b) car, and (c) elephant.

of the human visual system is not understood to be a resulting property of supervised

learning, i.e., it has developed thanks largely to ‘self-supervision’ (Smith and Gasser,

2005).

While great advances have been made in the past decade in developing computer

vision systems, their success can be mostly attributed to large-scale supervised rep-

resentation learning. Moreover, current artificial vision systems are not yet nearly as

robust as the human equivalent (Geirhos et al., 2019). For example, existing com-

monly used architectures are known to rely heavily on texture cues, which results in

sub-optimal generalization performance (Geirhos et al., 2019; Naseer et al., 2021).

Encouragingly, neural networks that also make use of more shape cues have also

been observed to be more robust to different types of image distortions (Geirhos et al.,

2019, 2021).

These observations point to two important questions that are potentially hindering

our artificial vision systems: (i) how do we reduce the over-reliance on supervised

labeled data and (ii) how do we encourage models to make greater use of shape infor-

mation to improve their robustness? Thankfully, great progress has been made on the
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first question as we now have methods for obtaining effective visual representations

through self-supervision alone, e.g., (Wu et al., 2018; Chen et al., 2020b; Bao et al.,

2022; He et al., 2022; Oquab et al., 2024). While methods exist for extracting shape-

adjacent information in the form of depth using self-supervision from collections of

image pairs (Godard et al., 2017) or video sequences (Zhou et al., 2017), these ap-

proaches tend to require strong assumptions about the scenes they are trained on (e.g.,

smooth camera motion, static scenes, limited visual diversity, etc.). As a result, the

current most effective approaches for predicting depth require explicit depth supervi-

sion during training (Ranftl et al., 2022). Moreover, even when depth supervision is

available, it is not trivial to use it to improve the performance on other tasks (Zamir

et al., 2018; Standley et al., 2020).

In this work, we attempt to address these combined challenges by proposing a

new method to improve existing self-supervised representation learning approaches by

enforcing these models to reason about object/scene shape during training.

We build on recent advances in 3D generative modeling (Chan et al., 2022; Sko-

rokhodov et al., 2023) to develop a self-supervised reconstruction method that gener-

ates a 3D representation of the input image. Our model is trained with a self-supervised

reconstruction objective, starting from an already trained self-supervised network (e.g.,

(Oquab et al., 2024)). Given an input image, we first extract a global feature represen-

tation using a pre-trained backbone network and then predict a 3D representation of the

scene depicted in the image. Then we reconstruct appearance and depth maps using

volume rendering from the predicted 3D representation. We use the difference between

the reconstructed image and the original input image, and the difference between the

predicted depth map and its pseudo ground truth as our training objectives. We do

not utilize any manual labels during training as we only require an unordered (i.e., not

from videos or stereo pairs) collection of monocular images and their corresponding

estimated depth from a previously trained depth prediction model (Bhat et al., 2023) as

input. To minimize the training loss, the learned image representation needs to capture

details about the shapes of the objects depicted in the input scenes.

While conceptually simple, the advantage of our approach is that it works with

monocular image collections and does not make strong assumptions about the types

of images it is trained on. As a result, we can train it using standard representation

learning datasets such as ImageNet (Russakovsky et al., 2015). Quantitative and quali-

tative results illustrate that our shape-aware representations are more robust compared

to variants that are not shape aware on a variety of downstream tasks. See Figure 4.1
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for a qualitative example.

In summary, we make the following contributions: (i) We explore the role of 3D

information when performing self-supervised learning on unordered monocular image

collections. (ii) We propose a new method that enhances self-supervised learned rep-

resentations via a proxy task that explicitly encodes 3D knowledge during training.

(iii) When applied to a range of robustness tasks, our approach obtains superior per-

formance compared to baselines that do not make use of 3D information at training

time.

4.2 Related Work

In this section, we discuss related work in self-supervised learning, monocular shape

understanding, and the role of shape in visual recognition.

Self-supervised learning. Recent approaches for deep learning-based self-supervised

learning (SSL) in computer vision can be categorized into two groups: (i) predictive

methods, where the learning objective depends solely on the input image, and (ii)

discriminative approaches, which use additional images as inputs.

Predictive tasks include context prediction (e.g., patch or pixel prediction from a

masked input image) (Doersch et al., 2015; Chen et al., 2020a; Bao et al., 2022; Zhou

et al., 2022; He et al., 2022), colorization of grayscale input images (Zhang et al.,

2016a), in-painting of randomly selected areas (Pathak et al., 2016), predicting image

rotation (Gidaris et al., 2018), or object counting in the input image (Noroozi et al.,

2017). In contrast, discriminative approaches aim to learn representations that make

the input image, and an augmented version of it, more similar to each other compared

to other randomly selected images (Hadsell et al., 2006; Wu et al., 2018; Dosovitskiy

et al., 2014; Chen et al., 2020b; Oquab et al., 2024; Oord et al., 2018; Grill et al., 2020;

Zbontar et al., 2021). Regularization to prevent trivial solutions (Grill et al., 2020;

Zbontar et al., 2021; Oquab et al., 2024) and selecting challenging negative examples

(He et al., 2020; Chen et al., 2020c) are important considerations for these methods. It

is worth noting that some of the above methods make use of both types of losses. For

a more comprehensive overview of SSL approaches, we direct the reader to (Jing and

Tian, 2020; Gui et al., 2023).

One limitation of the above approaches is that their focus is on 2D representation

learning. In this work, we aim to enhance the robustness of self-supervised networks

by utilizing a 3D proxy task during training. Recently, (Yu et al., 2023) introduced a
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new dataset consisting of common everyday objects containing multiple images, from

different camera viewpoints, for each object instance. Their dataset is significantly

larger than existing comparable multi-view datasets (e.g., (Henzler et al., 2021)). They

use this data to perform view-consistent self-supervised fine-tuning and show that this

pseudo-3D supervision results in better downstream image classification performance

on their dataset. However, multi-view data of this form is still very cumbersome and

time-consuming to collect and thus current datasets are still limited in their scope.

Recently, a new synthetic dataset named Photorealistic Unreal Graphics (PUG)

(Bordes et al., 2023) was introduced. It could be used as a source of multi-view data

as the images are rendered using 3D assets. However, the images lack realism and the

diversity of objects is still not on par with large scale 2D image collections. In this

work, we show that it is possible to inject 3D information into a self-supervised model

by training on single-view (i.e., not multi-view) image collections alone.

Single-view 3D understanding. Our approach uses a proxy monocular 3D recon-

struction task during training to enhance SSL performance. There is also a body of

work that aims to estimate 3D shape from monocular images where their focus is on

generation and not representation learning.

Example existing works estimate partial 3D shape in the form of depth maps, i.e.,

per-pixel continuous depth predictions. These methods either use pseudo ground truth

depth supervision during training (Ranftl et al., 2022; Bhat et al., 2023) or are trained

without depth supervision via image reconstruction losses (Garg et al., 2016; Godard

et al., 2017; Zhou et al., 2017; Godard et al., 2019). Another line of work attempts to

estimate the full 3D geometry of objects using 3D category priors using explicit repre-

sentations like meshes (Kanazawa et al., 2018a), implicit representations like surface

maps (Güler et al., 2018), or with skeletons (Wu et al., 2023b). The disadvantage of

these methods is that they require strong category shape priors (e.g., a 3D deformable

model of a human). More recently, there have been some category-centric works that

attempt to relax the need for strong shape priors (Monnier et al., 2022; Aygün and

Mac Aodha, 2024). However, these are still category focused and are thus limited to

specific classes of objects that have well-defined shapes (e.g., animals or humans).

The specific choice of 3D representation (e.g., volume, mesh, or points) used by

these methods can have a big impact on the quality of the 3D generated outputs and

the computation required to train the model. In the last few years, implicit 3D repre-

sentations parameterized via neural networks have become widely adopted for a range

of 3D tasks (Niemeyer et al., 2020; Yu et al., 2021; Mildenhall et al., 2021). How-
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ever, conventional implicit networks can be very slow to train, which hinders their

applicability to large-scale SSL. To address this, in this work, we make use of efficient

implicit representations popularized by methods that perform 3D generative modeling

from single image collections (Chan et al., 2022; Skorokhodov et al., 2023).

Shape and semantics. Finally, we review work that utilizes shape information for

visual recognition. It is well established, especially in the early years of cognitive

development, that infants more heavily rely on shape cues compared to other cues such

as texture during early category learning (Landau et al., 1988; Spelke, 1990; Spelke and

Kinzler, 2007). However, computational methods like CNNs (Geirhos et al., 2019) and

Vision Transformers (Naseer et al., 2021; Geirhos et al., 2021) do the opposite. With

more data, and bigger models, there is some evidence to suggest that this over-reliance

on texture may decrease (Dehghani et al., 2023), but it still does not fully disappear.

Prior to the wide adoption of deep-learning methods in computer vision, there were

a large number of works that utilized (2D) shape information for recognition tasks.

Examples include seminal works such as pictorial structures (Fischler and Elschlager,

1973) and deformable templates (Dalal and Triggs, 2005; Felzenszwalb et al., 2010;

Jain and Li, 2011; Pepik et al., 2012). Subsequently, end-to-end trained approaches that

did not use any structure or shape overtook these methods. However, recently a new

set of methods have been developed that illustrate the benefit of using explicit shape

information when combined with end-to-end learning methods for tasks like tracking

(Rajasegaran et al., 2022) and action recognition (Rajasegaran et al., 2023).

Furthermore, recent studies have employed alternative forms of training data, such

as styled images (Geirhos et al., 2019) and edge maps (Mummadi et al., 2021), to en-

hance shape awareness, albeit in a supervised context. In this work, we take inspiration

from human cognition to add more shape information into our models by developing a

proxy 3D reconstruction task to enhance SSL. To solve the resulting 3D reconstruction

task, our model needs to learn more about the shape, and not just the texture, of objects

during training.

4.3 Method

The aim of visual representation learning is to learn a function that maps an input

image to a compact and informative feature vector in a high-dimensional space, cap-

turing important visual properties such as shape, texture, semantics, and object iden-

tity. This is achieved by optimizing an objective function on a set of training data.
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Figure 4.2. Overview of our self-supervised single-view 3D reconstruction approach. Given

an input image, I, we first extract a representation of the image using an encoder network,

h = f (I). Then using a decoder network, Φ, we generate triplane features (Chan et al., 2022;

Skorokhodov et al., 2023). Using volume rendering (Mildenhall et al., 2021), conditioned on a

fixed camera location, we reconstruct the input image, Irec, and its depth Drec. We optimize all

networks using a combination of reconstruction losses on the input image, Lrgb, and estimated

depth, Ldepth, along with a distillation loss, Ldist , from a frozen 2D self-supervised learning

model to prevent the forgetting of already learned informative representations.

For self-supervised learning (SSL), the objective function is optimized without using

human-provided supervision (Wu et al., 2018; Chen et al., 2020b; Bao et al., 2022; He

et al., 2022; Oquab et al., 2024). However, given the lack of large-scale and semanti-

cally diverse datasets containing 3D information, current self-supervised methods are

typically limited to using 2D unordered image collection during training. As a result,

the learned representations that emerge from models trained on 2D images are not nec-

essarily fully capable of capturing all the properties of the 3D world (Geirhos et al.,

2021). In this work, we aim to improve these learned representations by using an ad-

ditional proxy 3D task during training. Our aim is not to learn a new function from

scratch, but to instead improve an existing pre-trained one.

4.3.1 Background

Our goal is to learn a representation function f (.), represented as a neural network,

that can map an input image I into a representation h = f (I), where h ∈ R d . This will

be achieved by optimizing an objective function L on a set of training data, without

using any manually labeled data. We want to improve networks that are trained with-
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out supervision, since it has been shown in (Goldblum et al., 2023) that SSL-based

backbones like DINOv2 (Oquab et al., 2024) outperform supervised counterparts as a

global image representation.

There are a large number of publicly available self-supervised models that can

extract useful representations from 2D images. Therefore, instead of learning a new

representation function from scratch, we utilize a backbone that is already pre-trained

with 2D self-supervised methods such as DINOv2 (Oquab et al., 2024), and improve

it by training it on a new proxy 3D task.

4.3.2 3D Aware Robust Representation Learning

We use 3D reconstruction as our proxy 3D task, i.e., given an input monocular im-

age, at training time, the network is tasked with reconstructing the 3D scene/objects

depicted in the image. The intuition behind this is that for the network to success-

fully perform reconstruction, it must also learn 3D aware features from the input im-

ages. As we want the network to learn image representations that transfer well to a

large variety of scenes, the input images should be visually diverse and the 3D repre-

sentation should be able to model complex scenes with multiple objects and diverse

backgrounds. Moreover, the reconstruction task should be relatively computationally

efficient to enable large-scale training. While there are alternative approaches for gen-

erating 3D predictions from 2D images (Nguyen-Phuoc et al., 2019; Henzler et al.,

2019; Pan et al., 2021), motivated by the need for efficiency we opted to use triplanes

(Chan et al., 2022) as our 3D representation. Triplanes explicitly encode latent network

features on axis-aligned planes. These features can then be aggregated via lightweight

implicit feature decoders to perform efficient volume rendering for 3D reconstruction.

Recently, (Skorokhodov et al., 2023) showed that triplanes can be used to generate 3D

depictions of images for various types of scenes from visually diverse datasets such as

ImageNet (Russakovsky et al., 2015).

Formally, given an input image I, we first extract a global image representation

h = f (I) using a backbone feature extractor network f (.). This backbone can be pre-

trained using a 2D self-supervised method. Then we use a decoder Φ(.) to generate

triplane features from the representations of the input image. Note that we only require

the decoder and triplane at training time and they can be discarded at inference, as we

only need to retain the backbone.

This decoder takes the backbone features as input and produces triplane features
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ϕ = Φ(h),ϕ ∈ R H×W×C×3. The decoder consists of two components, a set of learn-

able triplane embeddings ξ ∈ R (h·w·3)×D and upsampling blocks. As done in (Shen

et al., 2023), we first apply cross-attention between the triplane embeddings and the

image representation to obtain low resolution triplane features, ϕ′ = cross(ξ,h),ϕ′ ∈
R h×w×C×3. Then we apply upsampling layers, which consist of bilinear upsampling

and convolution operations, to obtain full resolution triplane features ϕ= upsample(ϕ′).

Different than (Shen et al., 2023), we do not employ any quantization or style mapping

(Karras et al., 2020) as our goal is not to learn an unconditional generator, but to esti-

mate 3D representation from the input image.

To perform volume rendering, we compute the radiance field using a simple two-

layer MLP similar to (Skorokhodov et al., 2023; Chan et al., 2022) using features from

the triplane at specified 3D points. Note that as (Chan et al., 2022) and (Skorokhodov

et al., 2023) are generative methods, and not representation learning approaches, they

generate triplanes from random codes. In contrast, our approach generates triplanes

conditioned on the input image’s representation h which is obtained from the back-

bone network. Using volume rendering from the triplane features, we produce the

reconstructed image, Irec, and its corresponding depth map, Drec,

  I_{rec}, D_{rec} = \Pi (\Gamma (\varphi , \pi )),   (4.1)

where Γ is the function that queries the radiance fields from triplanes conditioned on

camera pose π which contains extrinsic and intrinsic parameters, and Π is a volume

rendering operation (Mildenhall et al., 2021). We use a fixed camera pose in our ex-

periments since we want to learn a viewer-centered 3D representation, which is shown

to be more generalizable compared to object-centric representations (Shin et al., 2018;

Tatarchenko et al., 2019). Moreover, as we reconstruct the whole scene with poten-

tially multiple objects, the canonical pose is ambiguous.

Given that 3D reconstruction from a 2D image is an ill-posed problem, like 3DGP

(Skorokhodov et al., 2023), we make use of 2D depth information to produce plausible

3D predictions. As ground truth depth maps are not available for large-scale, in-the-

wild, datasets like ImageNet (Russakovsky et al., 2015), we use pseudo ground truth

depth maps obtained from off-the-shelf monocular depth methods such as ZoeDepth

(Bhat et al., 2023). Different from 3DGP (Skorokhodov et al., 2023), we do not modify

the depth reconstruction with an adapter, but use it as it is for computing a depth

reconstruction loss.

Given the input image Ii and its pseudo depth Di, we simply train the decoder such
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that it generates a plausible 3D prediction that is capable of reconstructing them both

using the following losses

  \mathcal {L}_{rgb} & = \frac {1}{B}\sum _{i=1}^{B} ||I^{i} - I_{rec}^{i}||_{2},\\ \mathcal {L}_{depth} & = \frac {1}{B}\sum _{i=1}^{B} ||D^{i} - D_{rec}^{i}||_{2},








 












 (4.3)

where B is the batch size. Here, Lrgb and Ldepth represent mean squared error losses,

that depend on the input image and its depth. An illustration of our overall pipeline is

depicted in Figure 4.2. In addition to the reconstruction losses, we apply a L1 normal-

ization loss for the density values the radiance fields, Lnorm = ∑
B
i=1 ||∆i||1, where ∆i is

the set of density values that calculated for all the queried 3D points for the image Ii.

4.3.3 Preventing Forgetting

The benefit of our approach is that we can apply it to any self-supervised network that

has already been pre-trained using 2D objectives. However, our 3D reconstruction

objective might inadvertently bias the model towards the 3D task and force it to ‘for-

get’ the useful representation that it has already encoded. To prevent this, we add a

knowledge distillation loss (Hinton et al., 2015),

  \mathcal {L}_{dist} = \frac {1}{B}\sum _{i=1}^{B} ||f(I^{i}) - f_{teach}(I^{i})||_{2}.








    (4.4)

Here, f (.) is the representation function that we are optimizing and fteach is a frozen

backbone that is already trained using a 2D self-supervised objective.

Our final overall training objective consists of a combination of four losses

  \mathcal {L} = \lambda _{rgb}\mathcal {L}_{rgb} + \lambda _{depth}\mathcal {L}_{depth} + \lambda _{dist}\mathcal {L}_{dist} + \lambda _{norm}\mathcal {L}_{norm},      (4.5)

where the λ values are weights for each of the respective loss terms.

4.3.4 Implementation Details

Backbone and Feature Extraction. We build our approach on standard Vision Trans-

formers (ViTs) (Kolesnikov et al., 2021), specifically using the DINOv2 pre-trained

variants (Oquab et al., 2024). In all experiments, we explore ViT-S/14, ViT-B/14, and

ViT-L/14 backbones, which produce 384-, 768-, and 1024-dimensional features, re-

spectively. From each image, we extract class and patch tokens from the last four
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layers and concatenate them to obtain a global image representation. Additionally, we

concatenate the globally averaged patch features with the CLS token and project the

result to 1024 dimensions using a 1×1 convolution. This representation is used as input

to the decoder.

Decoder and Triplane Representation. To generate triplane features, we employ

a decoder Φ consisting of cross-attention blocks and 2D upsampling convolutional

layers, following the design of (Shen et al., 2023). The decoder takes global features

h ∈ R1024 and learnable triplane embeddings ξ ∈ R16×16×1024, and produces triplane

features of size 256× 256× 32× 3. We use these features to reconstruct images and

depth maps via volume rendering (Barron et al., 2021), which outputs reconstructions

of size 256× 256× 3 (RGB) and 256× 256 (depth). For each pixel, we sample a

ray and evaluate 16 points along the ray to query the triplane representation. Using

bilinear sampling, we obtain features at each 3D point, which are passed through a

two-layer MLP to predict radiance (RGB and occupancy) for final rendering. We adopt

importance sampling as in prior work (Skorokhodov et al., 2023; Barron et al., 2021).

Training Setup. Our model is trained end-to-end, optimizing the backbone, decoder,

and triplane embeddings jointly. We use the Adam optimizer (Kingma and Ba, 2014)

with a fixed learning rate of 1e−4 for 10 epochs. The loss weights are set as λrgb = 0.1,

λdepth = 1, λdist = 1, and λnorm = 1e−3 for all experiments. We use pseudo depth maps

generated by ZoeDepth (Bhat et al., 2023) with the DPT backbone as supervision for

training on ImageNet-1k (Russakovsky et al., 2015), which contains around 1.2 million

images across 1,000 classes. These depth maps are generated automatically and pro-

vide purely geometric supervision, without any semantic cues. Training is performed

on 64 GPUs with a batch size of 12 per GPU. Each training run takes approximately 10

hours for 10 epochs. We apply basic data augmentations, including resizing images to

256×256, random cropping to 224×224, and horizontal flipping with 0.5 probability.

Ablation Without Triplane. To assess the benefit of the explicit triplane representa-

tion, we include a baseline where the decoder directly upsamples global image features

using 2D convolutional layers, without volume rendering. This model is trained with

the same reconstruction and distillation objectives, allowing a fair comparison against

our full triplane-based method.
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4.4 Experiments

The main goal of our proposed method is to enhance the robustness of existing rep-

resentation learning methods. We first show how our method results in improved

performance on several robustness benchmarks such as ImageNet-Rendition (Im-R)

(Hendrycks et al., 2021), ImageNet-Sketch (Im-Sketch) (Wang et al., 2019), and Pho-

torealistic Unreal Graphics (PUG) (Bordes et al., 2023).

We also perform experiments on conventional tasks like image recognition (Rus-

sakovsky et al., 2015), fine-grained image classification (Van Horn et al., 2021), and

depth estimation (Silberman et al., 2012). This is to illustrate that our approach does

not decrease performance for other tasks at the expense of improving robustness.

After training the network with the proxy 3D task, we discard the 3D estimation

components of the network and use the backbone representation function to extract

global image representation from images h = f (I). For evaluation, we train per-task

decoder networks using a fixed representation function y = ψ(h), where the form of y

and ψ(h) depends on the specific downstream task. In each experimental section, we

provide details about the decoding function and training details. In all of our experi-

ments, the representation functions are frozen, unless stated otherwise.

4.4.1 Robustness

Datasets. We present experimental results on benchmarks that are designed to test

the robustness of methods in the face of various appearance related shifts. ImageNet-

Rendition (Im-R) (Hendrycks et al., 2021) contains 30,000 images of art, cartoon,

graffiti, etc. from 200 ImageNet classes. ImageNet-Sketch (Im-Sketch) (Wang et al.,

2019) contains 50 sketch images for each of the 1000 original ImageNet classes. These

two datasets contain examples where the texture of the objects is significantly different

compared to real in-the-wild photographs, which leads to a significant drop in perfor-

mance for previous SSL methods (Oquab et al., 2024).

Photorealistic Unreal Graphics (PUG) (Bordes et al., 2023) is a dataset that is de-

signed to evaluate the robustness of visual recognition models. It contains synthetically

generated examples from 3D assets by controlling for factors like object texture, back-

ground, lighting etc.

It has been demonstrated that state-of-the-art visual recognition models obtain in-

adequate performance on this dataset due to changes in appearance factors like object

texture and size (Bordes et al., 2023).
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We report performance on these two main factors in our experiments. The 3D

Common Corruptions (ImageNet-3DCC) (Kar et al., 2022) dataset was created with

synthetic corruptions with varying levels of difficulty using ImageNet validation im-

ages. Compared to previous datasets, it was constructed with synthetic augmentations,

but it contains real images and realistic corruptions such as low lighting, flash, and

motion blur which reflect real-world challenges for visual recognition models.

Protocol. All of the experiments that we present here are designed to measure the

robustness of classifiers that are trained on ImageNet (Russakovsky et al., 2015) clas-

sification data. Given this, we first train a linear classifier on top of various frozen

backbones from DINOv2 (Oquab et al., 2024) that are either enhanced via our method

(denoted as ‘+ 3D-Prior’) or not, using 1k ImageNet classes from the original training

set. We then test the respective linear classifiers on various robustness datasets.

Results. In Table 4.1, we observe that our proposed method (‘3D-Prior’) improves

the robustness of SSL methods on all robustness benchmarks tested, irrespective of ar-

chitecture type. For instance, we improve the performance for the different backbone

architectures on both ImageNet-Rendition and ImageNet-Sketch datasets, which con-

tain highly challenging out-of-distribution examples. In particular, the performance

of DINOv2 (Oquab et al., 2024) using the ViTB/14 architecture is improved by 2%

on both benchmarks. Moreover, although the objects in the Im-Sketches images are

not truly 3D, models incorporating a 3D prior demonstrate greater shape reasoning,

exhibit increased shape bias, and achieve more accurate predictions. Furthermore, for

the PUG benchmark, our method improved the performance of the models for object

size and texture variation in all cases.

We also present results on the ImageNet-3DCC dataset for various synthetic cor-

ruption types in Table 4.2. For each level, there are 5 different corruption levels, for

simplicity, we report the averaged top-1 accuracy for each corruption type. We observe

slight improvement for corruption types like far focus, xy motion blur, and z motion

blurs. However, for other factors like low light, iso noise, we achieve performance that

is comparable to the baselines.

We also present qualitative results in Figure 4.3. We illustrate some top-5 predic-

tions from linear classifiers that were trained on top of representations from DINOv2,

either with or without our method. For instance, the top left example is misclassified

as a ‘starfish’ by the DINOv2-based classifier due to the color of the input image while

our shape-aware approach correctly identifies the images as containing a ‘goldfish’

due to improved shape-bias.
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Method Im-R Im-Sketch PUG-Texture PUG-Size

ViT-S/14 53.7 41.2 20.7 26.8

ViT-S/14 + 3D-Prior 54.6 41.8 21.2 26.9

ViT-B/14 63.3 50.6 25.3 32.2

ViT-B/14 + 3D-Prior 65.9 52.4 26.2 33.4

ViT-L/14 74.4 59.3 34.5 42.7

ViT-L/14 + 3D-Prior 75.9 59.5 36.4 43.2

Table 4.1. Robustness evaluation using frozen backbone features from DINOv2 (Oquab et al.,

2024) and their enhanced versions from our method (‘+ 3D-Prior’). Here we report top-1

accuracy for all benchmarks. Irrespective of backbone architecture type, our 3D-Prior method

improves performance across all datasets. For the PUG experiments, we re-run the DINOv2

baselines with our evaluation setting.

Method color quant far focus flash fog 3d iso noise

ViT-B/14 72.5 71.6 60.8 62.5 63.9
ViT-B/14 + 3D-Prior 72.6 72.0 60.7 62.7 63.3

Method low light near focus xy motion blur z motion blur

ViT-B/14 72.3 75.5 58.5 58.3

ViT-B/14 + 3D-Prior 72.3 75.8 59.0 58.7

Table 4.2. Robustness evaluation using frozen backbone features from DINOv2 (Oquab et al.,

2024) and their enhanced versions from our method on the ImageNet-3DCC dataset (Kar et al.,

2022) using a ViT-B/14-based architecture. While our method improves robustness for corrup-

tions such as ‘motion blur’ and ‘far focus’, there are cases such as ‘flash’ where we are slightly

worse.
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Figure 4.3. Here we compare top-5 predictions from linear classifiers that are trained on orig-

inal DINOv2 (Oquab et al., 2024) backbone features (shown in red) and our 3D enhanced ap-

proach (shown in blue) on various challenging examples from ImageNet-Rendition (Hendrycks

et al., 2021) and ImageNet-Sketch (Wang et al., 2019). Our method results in more shape infor-

mation being encoded in the representation and, hence, leads to classifiers that are more robust

for these challenging out-of-distribution examples.
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4.4.2 Downstream Tasks

Tasks and datasets. We present results on additional downstream tasks to show that

our method does not lead to worse performance for other tasks at the expense of im-

proved robustness. We report results for visual recognition on ImageNet (Russakovsky

et al., 2015), fine-grained classification using the iNaturalist 2021 (Van Horn et al.,

2021), and depth estimation on NYU-DepthV2 (Silberman et al., 2012).

Protocol. We follow the same evaluation protocol as in DINOv2 (Oquab et al., 2024).

For ImageNet and iNat21 experiments we froze the backbone, and trained a single-

layer classifier using the respective training sets and reported the top-1 validation ac-

curacy. For depth estimation on NYU-DepthV2, we trained two different decoders on

top of frozen backbone features, a single linear layer and a more complex DPT (Ran-

ftl et al., 2022) decoder, and followed the same training recipe from DINOv2 (Oquab

et al., 2024). We also compare to the non-3D baseline numbers from (Oquab et al.,

2024).

Results. Results are presented in Table 4.3. For the visual recognition task on ImageNet-

1k, we observe that linear classification performance is slightly improved for all the

backbone architectures evaluated, and the performance of the models on fine-grained

classification for iNat21 is maintained. Furthermore, the performance on depth estima-

tion is improved compared to the baselines, especially when we use a high-resolution

DPT decoder on top of our learned representation.

4.4.3 Shape Bias

Similar to humans, we want our visual recognition models to pay more attention

to shape cues compared to texture. As our proxy 3D task requires learning more

shape-oriented representations, our hypothesis is that it should lead to representations

that have more shape bias. We use the same experimental protocol and dataset from

(Geirhos et al., 2019) to measure the shape bias of different models. The dataset con-

tains various synthetically generated examples, where the shape of the object comes

from one class and the texture of the object comes from another.

We measure the shape bias of representations from DINOv2 (Oquab et al., 2024)

before and after it is trained with our proxy 3D objective. The results are visualized

in Figure 4.4. We observe that our method improves the shape bias of the original

representations, which is the objective of our shape-centric 3D reconstruction task.

Qualitative examples, where we compare predictions of models with and without our
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Method ImageNet-1k iNat21
NYU-DepthV2 ↓

linear DPT

ViT-S/14 81.1 74.2 0.499 0.356

ViT-S/14 + 3D-Prior 81.4 73.6 0.438 0.346

ViT-B/14 84.5 81.1 0.399 0.317

ViT-B/14 + 3D-Prior 85.1 82.0 0.398 0.300

ViT-L/14 86.3 85.1 0.384 0.293

ViT-L/14 + 3D-Prior 86.5 85.2 0.389 0.286

Table 4.3. Downstream task evaluation using frozen backbone features on various tasks using

DINOv2 (Oquab et al., 2024) with and without our 3D-Prior method. We report top-1 accuracy

for the ImageNet-1k (Russakovsky et al., 2015) and iNat21 (Van Horn et al., 2021) datasets

(higher is better), and RMSE for NYU-DepthV2 (Silberman et al., 2012) dataset (lower is

better). Our method leads to improvements in visual recognition performance on ImageNet

and for depth estimation on NYU-DepthV2, and does not negatively impact performance on

the fine-grained iNat21 dataset.

method, can be seen in Figure 4.1.

These results, combined with the robustness experiments, show that the hypothesis

of improving shape bias to obtain more robust representations is valid. Furthermore,

these results may further encourage future lines of work in SSL to develop methods

that are designed to explicitly consider 3D representations during training.

4.4.4 Ablations

To quantify the importance of individual components of our model, we present ablation

experiments on the robustness tasks in Table 4.4.

Removing the triplane. First, we investigate if using a 3D representation in the form

of a triplane with volume rendering is necessary or if training a basic depth and im-

age decoder network on top of representations is sufficient. Here, we added a decoder

which consists of multiple upsampling and convolution layers to predict depth and im-

ages. We observe a drop in performance on all benchmarks, but with a smaller drop on

ImageNet. This experiment indicates that using an explicit 3D representation is crucial

to improve the robustness of the learned representations. Using a 3D representation
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Figure 4.4. Quantification of the shape bias of different DINOv2 (Oquab et al., 2024) represen-

tations with and without our 3D-Prior method. We calculate the shape bias using the data and

protocol from (Geirhos et al., 2019). Our approach increases the shape bias of visual recogni-

tion models and we observe that with larger backbones, the difference grows.

is essential because it incorporates geometric priors such as camera viewpoint, depth,

and occlusion handling.

Removing distillation. Next, we try to understand what happens if we do not employ

a distillation loss. Without distillation, the model is free to forget useful representation

that are already encoded in the 2D SSL backbone. To test this, we simply trained a

separate model without the distillation loss. Removing distillation leads to a significant

drop in performance across all benchmarks. This experiment shows that preventing the

forgetting of already learned useful representations is essential.

Training from scratch. We also investigate if we can learn a global image representa-

tion using only the proxy 3D task. Here, we initialized the backbone network randomly

(i.e., they are no longer pre-trained) and trained the network using only the image and

depth reconstruction losses. The experimental results show that the learned representa-

tion is not meaningful and, by itself, the 3D reconstruction task is not a sufficient way
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Method Im-1k Im-R Im-Sketch PUG-Texture PUG-Size

DinoV2 84.5 63.3 50.6 25.3 32.2

Ours 85.1 65.9 52.4 26.2 33.4

Ours w/o triplane 84.3 63.1 50.7 24.9 31.1

Ours w/o Ldist 70.7 34.2 22.9 12.1 16.4

Ours from scratch 14.4 8.5 7.4 0.2 0.1

Table 4.4. Ablation experiments on various robustness benchmarks using a DinoV2 ViT-B/14

model, where these benchmarks measure out-of-distribution (OOD) robustness across scenar-

ios such as sketches, renditions, texture variations, and object size changes. We investigate the

importance of using an explicit 3D representation during training (i.e., w/o triplane), disabling

our distillation loss (i.e., w/o Ldist), and we evaluate if we can learn reasonable representations

when training from scratch without using a pre-trained backbone or distillation loss (i.e., from

scratch).

to learn a global image representation.

Amount of data. Finally, we explore the impact of varying the size of the training

dataset that is used for the 3D proxy task. (Cole et al., 2022) showed that 2D-based

SSL methods benefit from being trained on larger unlabeled datasets, but that there

are diminishing returns after a certain amount for the methods they tested. Similarly,

we quantify how efficient our method is in terms of the training data size. For this

experiment, we randomly selected 100k and 500k images from the ImageNet training

set, and trained different instances of our model on these subsets using the same num-

ber of iterations as the full model. We report the results in Figure 4.5. Interestingly,

compared to 2D self-supervised methods (Cole et al., 2022), the performance of our

3D enhanced models are not significantly impacted by the reduction in training data.

Effects of Lrgb and Ldepth. In Table 4.5, we show how the reconstruction losses, Lrgb

and Ldepth, impact performance. Removing the rgb loss leads to slightly enhanced per-

formance on the Im-R and Im-Sketch robustness datasets, albeit resulting in marginally

lower scores on the PUG dataset. However, omitting the rgb loss causes the model’s

performance to deteriorate for the visual recognition task on the ImageNet-1K dataset.

The model trained without the depth loss performs worse in all cases. Given the ill-

posed nature of the single-view 3D reconstruction problem, the absence of depth su-

pervision during training can lead to predicted 3D representations being insufficient,
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Figure 4.5. We compare the performance of our approach using different amounts of training

data from that same source for the 3D proxy task with DinoV2 ViT-B/14 backbones. Surpris-

ingly, we observe that more data does not change the performance drastically, which shows

that our method is data efficient.

thereby resulting in sub-optimal representations for the input image.

Different Backbone Architecture. Furthermore, we evaluate whether our method is

still effective when coupled with a different backbone architecture (i.e., a ResNet50

(He et al., 2016)) trained with an alternative self-supervised learning objective (i.e.,

MoCov3 (Chen et al., 2021)). In Table 4.6, we present visual recognition and robust-

ness metrics. We evaluated both the MoCov3 baseline and our method’s extensions us-

ing identical linear probing hyperparameter space and reported the best. Our approach

improved the baseline results, demonstrating its adaptability across architectures and

diverse SSL methods.

4.4.5 Qualitative Results

While it is not our main objective, we display reconstruction results in Figure 4.6.

Our method is able to reconstruct different kinds of objects. However, the quality of

our reconstructions is not on par with the state-of-the-art generative approaches. In

this work, our aim is not to obtain high-quality reconstructions, but to learn 3D-aware

representations to improve global image representations. Moreover, we want to avail

of an efficient and scalable 3D representation to train our network with a large-scale

dataset and while design choices can result in slightly lower quality reconstructions
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Method Im-1k Im-R Im-Sketch PUG-Texture PUG-Size

DinoV2 84.5 63.3 50.6 25.3 32.2

Ours 85.1 65.9 52.4 26.2 33.4

Ours w/o Lrgb 84.7 66.5 52.3 25.8 33.4

Ours w/o Ldepth 84.5 63.8 50.3 25.4 32.3

Table 4.5. Ablation experiments on various robustness benchmarks using DinoV2 ViT-B/14.

We investigate the impact of removing different reconstruction losses (i.e., w/o Lrgb and w/o

Ldepth).

Method Im-1k Im-R Im-Sketch PUG-Texture PUG-Size

MoCov3 R50 70.7 36.2 24.4 10.3 12.6

MoCov3 R50 + 3D Prior 70.7 36.3 23.9 10.6 12.8

Table 4.6. We test if our method is able to improve the representation obtained from MoCov3

(Chen et al., 2021) objective using a different architecture (i.e., ResNet50 (He et al., 2016)).

the learned image representations have been demonstrated to improve the robustness

of the backbone networks which was our core objective.

4.5 Discussion and Limitations

One of the limitations of our approach is its reliance on pseudo depth maps for each

input image during training. To obtain these, we use existing pre-trained monocular

depth estimation models, such as those introduced by (Ranftl et al., 2022) and (Bhat

et al., 2023). These models provide only geometric supervision in the form of depth

and do not contribute any semantic or category-specific information. Despite this,

pseudo depth maps can be generated automatically and at minimal cost, making them

practical for large-scale 2D image collections. In addition, these monocular depth

models have been shown to be robust and generalizable across a wide range of scenes

and object categories. This makes them a suitable choice for our framework, which is

designed to scale across diverse and unconstrained visual data.

Another important consideration is the design and integration of our 3D prior,

which is represented as a triplane feature field. While the triplane offers a compact
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Figure 4.6. Visualization of 3D reconstruction by our model for a subset of ImageNet validation

images.
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Input(s) Operation Output

h ∈ R 1024

Cross Attention ϕ′ ∈ R 16×16×1024

ξ ∈ R 16×16×1024

ϕ′ ∈ R 16×16×1024 Up Sample + 2D Convolution R 32×32×512

R 64×64×256 Up Sample + 2D Convolution R 128×128×256

R 128×128×128 Up Sample + 2D Convolution R 256×256×128

R 256×256×128 1D Convolution + Reshaping ϕ ∈ R 256×256×32×3

Table 4.7. Triplane decoder architecture (Φ). The decoder takes learnable embeddings and the

global image feature as input and calculates cross-attention between them and upsamples the

output with multiple blocks to obtain the final axis-aligned triplane features.

way to encode spatial structure and has proven useful in 3D-aware image synthesis,

it comes with inherent limitations. Most notably, it struggles to simultaneously repre-

sent both fine-grained object geometry and large-scale scene layouts—a challenge that

becomes especially pronounced in datasets with high variability, such as those resem-

bling ImageNet, where images may depict either isolated objects or complex, cluttered

environments.

In our framework, the 3D prior is introduced only after the main 2D representa-

tion has been trained. As a result, it plays a secondary role, functioning primarily

as a refinement mechanism rather than a central component of the learning process.

Its integration leads to improved robustness as it increases shape bias in the learned

features. This inductive bias is more closely aligned with human visual perception,

which prioritizes shape over texture. However, because the 3D prior is incorporated at

a later stage and is subject only to fine-tuning, its ability to substantially alter the over-

all representation is inherently limited. Therefore, while the improvements it brings

are meaningful, they remain relatively modest in scope.

4.6 Conclusion

We presented a new approach to enhance the robustness of visual representations from

2D self-supervised networks. Our method utilizes a conceptually simple single-view

3D reconstruction task to encourage learning more shape-aware 3D-centric represen-
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tations. One of the distinct advantages of our approach is that it can be applied to

unordered single image collections as it does not impose any stringent assumptions on

the types of images it is trained on. We show that incorporating shape-aware knowl-

edge into the representation learning process enhances robustness when compared to

alternatives that are not shape aware across a range of visual understanding bench-

marks. We hope that our results will encourage a new line of self-supervised works

that are designed to consider 3D representations during training.



Chapter 5

Conclusion

5.1 Summary

This thesis explores key advancements in semantic correspondence estimation, 3D

shape reconstruction, and self-supervised learning, introducing novel methodologies

that enhance the robustness and effectiveness of visual representation learning.

First, we investigated unsupervised semantic correspondence estimation, evaluat-

ing state-of-the-art methods under a standardized protocol. Our proposed diagnostic

framework and performance metric provide deeper insights into failure cases, inform-

ing the development of improved approaches. We then introduced a novel semantic

correspondence method that leverages pre-trained features and optimizes for superior

matches, achieving performance that surpasses existing techniques at the time of writ-

ing.

Second, we presented SAOR, a novel approach for estimating the 3D shape, tex-

ture, and viewpoint of articulated objects from a single image. Unlike traditional

methods that rely on rigid 3D priors, SAOR learns to articulate shapes in a skeleton-

free manner while maintaining cross-instance consistency. Its novel components make

SAOR the first single-view, multi-category articulated object reconstruction method

to demonstrate improved qualitative and quantitative results on challenging real-world

datasets.

Finally, we addressed the limitations of conventional self-supervised learning, which

predominantly relies on monocular 2D data. Inspired by the robustness of human vi-

sual perception, we proposed a method that explicitly integrates a strong 3D structural

prior into self-supervised training. Our experiments demonstrate that this approach

yields more robust visual representations across multiple datasets.

95
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Together, these contributions advance the fields of semantic matching, 3D recon-

struction, and self-supervised learning by introducing innovative methodologies that

bridge critical gaps in existing approaches. We hope that our findings will inspire

further research toward more robust and generalizable visual learning systems.

5.2 Key Takeaways

5.2.1 The Need for Improved Metrics and Better Datasets

In Chapters 2 and 3, we explored the challenges of semantic correspondence and 3D

reconstruction, respectively. For both problems, the Percentage of Key Points (PCK)

metric has traditionally been the standard for evaluating model performance within the

research community in recent years. However, our investigation revealed significant

shortcomings in the PCK metric, highlighting its limitations as a reliable indicator

of semantic correspondence capabilities. Additionally, a recent study (Mariotti et al.,

2024) has further exposed flaws in this metric and proposed several enhancements to

address these issues. While the community continues to make substantial efforts to

develop improved models and algorithms for a wide range of tasks, comparatively

little attention has been directed toward refining the evaluation metrics themselves.

The reliance on flawed metrics can mislead the interpretation of results and hinder the

identification of genuinely effective solutions.

A similar challenge exists in the selection and utilization of datasets for benchmark-

ing. Although datasets play a crucial role in evaluating model performance, many com-

monly used d atasets suffer from biases and limited diversity. For instance, the most

commonly used dataset in semantic correspondence, SPair-71K (Min et al., 2019b),

only contains sparsely annotated yet semantically distinct keypoints, such as the left

eye of a bird, the right ankle of a cat, or the corner of a TV monitor. These key-

points are derived from object landmarks that are intentionally designed to be both

detectable and salient. A more effective approach would involve incorporating addi-

tional annotations for object parts that may not be as easily identifiable but still exhibit

meaningful semantic correspondences. This would provide a richer and more compre-

hensive understanding of object relationships, facilitating the development of models

with improved generalization and robustness.

We believe the community would benefit from more dedicated efforts toward es-

tablishing robust benchmarks and improving dataset representativeness. In this thesis,
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we introduced a novel evaluation framework in Chapter 2 designed to address some

of these challenges for the problem of semantic correspondence. However, despite its

potential, this framework has seen limited adoption, as most existing work continues

to focus on improving performance metrics within established benchmarks.

Promoting the creation of diverse and challenging datasets can complement the de-

velopment of enhanced metrics, resulting in more meaningful and reliable evaluations

of model performance. By addressing both the flaws in evaluation metrics and the

limitations of datasets, the research community can foster more accurate and transpar-

ent progress in the fields of semantic correspondence, 3D reconstruction, and beyond.

Encouraging discussions around metric improvement and dataset development will ul-

timately lead to a stronger foundation for future advancements in computer vision and

related areas.

5.2.2 The Importance of Data-Driven Approaches and Reducing

Reliance on Explicit Priors

In recent years, significant advancements in computer vision have been primarily driven

by the increasing scale of datasets and models. While scaling data is relatively straight-

forward for tasks such as image classification and segmentation, it presents substan-

tial challenges for 3D-related tasks. Unlike 2D data, which can often be easily col-

lected from the web, acquiring large-scale realistic 3D data is inherently difficult and

resource-intensive.

To address these challenges, many previous studies have relied on 2D image col-

lections to alleviate the need for extensive 3D data. These approaches typically involve

learning priors from 2D data to infer 3D structures. However, they often incorporate

explicit assumptions and constraints to model these priors, which considerably limits

the generalizability of the resulting systems. Moreover, such assumptions restrict the

scalability of models as they impose limitations on the types and diversity of data that

can be effectively utilized. For instance, (Wu et al., 2023b) employed a skeleton-based

prior that required training on a single image category. This dependence on domain-

specific priors hinders the development of more robust and generalizable 3D models

capable of leveraging diverse datasets.

In our work, we aim to address these limitations by reducing reliance on explicit

priors. Specifically, we eliminate the use of skeleton priors, which enables our ap-

proach to be applied to significantly larger and more diverse datasets. Consequently,
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we are able to train our models on image collections spanning hundreds of animal cat-

egories. This comprehensive training enhances reconstruction performance within a

single model, highlighting the advantages of learning more flexible and generalizable

3D priors directly from data. By adopting this data-driven approach, we contribute to

advancing the scalability and generalizability of 3D models. Our results emphasize

the importance of minimizing restrictive assumptions and underscore the potential of

large-scale training to learn richer representations of the 3D world. Our model works

without such assumptions thanks to novel technical innovations in the objective func-

tions and advances in model design, which enable effective utilization of large-scale

available 2D datasets.

In a similar spirit, a recent study by Shtedritski et al. (2023), which investigates

unsupervised semantic correspondence, relaxes the assumption made in Chapter 2 that

training image pairs must belong to the same semantic class. By training a novel

model on a large-scale dataset without this constraint, the authors achieve significantly

improved performance in semantic matching. This further supports the view that relax-

ing strong assumptions and leveraging large-scale, diverse data can lead to more robust

and generalizable models. Moreover, (Oquab et al., 2024), a recent self-supervised

network trained without any labels and not specifically trained for semantic correspon-

dence, but on a larger dataset, obtained even better results

As model and dataset scaling continue, it is critical to focus on reducing reliance

on overly restrictive assumptions and priors. By embracing more flexible, data-driven

approaches, we can foster the development of models that are more generalizable and

capable of addressing a wider range of tasks and challenges. We hope our findings

inspire further research into novel ways of overcoming the limitations imposed by ex-

plicit priors, encouraging collaboration and innovation across disciplines. Ultimately,

such efforts will lead to the creation of more robust and scalable systems, expanding

the boundaries of what is possible in 3D modeling and beyond.

5.2.3 Rethinking Representation Learning with 3D

There is significant and growing interest within the research community in develop-

ing methods to learn 3D representations. However, much of this work has primarily

focused on estimating the 3D properties of the world from 2D images (Godard et al.,

2017; Wu et al., 2023b; Danier et al., 2025; Wang et al., 2025; Szymanowicz et al.,

2024). While this approach has its merits, it differs from how humans perceive and
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understand the world. In contrast to relying on 2D images, humans acquire their visual

priors and perceptual abilities by directly navigating and interacting with the 3D en-

vironment. Through physical experience, humans gain an embodied understanding of

spatial relationships, depth, and object properties. This real-world interaction allows

us to develop a robust and dynamic perception of the 3D world, which current models

struggle to replicate. Most existing vision methods, in contrast, typically learn visual

representations from single-view image collections without other supervision (Oquab

et al., 2024) or with language supervision (Radford et al., 2021; Rombach et al., 2022).

While this approach has been effective in many domains, it limits the depth of under-

standing related to 3D spatial relationships that these models can develop.

Although these models have demonstrated some capabilities in understanding 3D

concepts (El Banani et al., 2024; Danier et al., 2025; Azad et al., 2024; Zhan et al.,

2024), they are still far from achieving human-level perception. The ability to estimate

or infer the 3D properties of the world from 2D inputs remains limited and lacks the

nuanced understanding that comes from direct interaction with the 3D environment.

While there have been attempts to extend existing learning algorithms to 3D, such

as through the use of multi-view learning or by incorporating additional depth data

(Zhang et al., 2024; Yue et al., 2024), these models were not originally designed with

3D reasoning in mind. They often treat 3D data as an afterthought or an additional

layer, rather than integrating 3D considerations into their core architecture from the

outset. This results in a mismatch between the models’ design and the complexity of

the 3D world.

We believe that to advance the development of perceptual systems capable of un-

derstanding and reasoning about 3D environments, it is essential to design new repre-

sentation learning methods that are specifically tailored to reason in 3D. Such methods

should not only consume 3D data but also reason about it in a way that reflects the com-

plexities and nuances of real-world 3D spaces. This shift in approach will be crucial

for building perception systems that can be used by embodied agents, such as robots or

autonomous vehicles, which need to navigate and interact with the world in a dynamic,

3D context.

5.3 Limitations and Future Work

In Chapter 2, we explored the interplay between shape and semantics in the context of

semantic correspondence estimation, introducing a novel evaluation framework. This
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task requires matching sparsely annotated yet semantically distinct keypoints, such as

the left eye of a bird, the right ankle of a cat, or the corner of a TV monitor. These

keypoints are derived from object landmarks that are intentionally designed to be both

detectable and salient.

A natural next step is to extend this framework by incorporating additional annota-

tions for object parts that may not be as easily identifiable but still exhibit meaningful

semantic correspondences. Expanding the annotation set in this way could improve

the robustness of semantic matching models and provide deeper insights into the rela-

tionship between shape and semantics.

Furthermore, with the exception of SPair-71K (Min et al., 2019b), the datasets used

in our experiments were not specifically designed for semantic correspondence. The

creation of more diverse and large-scale semantic correspondence datasets could en-

able the development of more robust and generalizable models, facilitate benchmark-

ing under a broader range of conditions, and provide new insights into the fundamental

principles governing semantic alignment across different object categories.

In Chapter 3, we introduced SAOR, a novel method for single-view 3D object

reconstruction, specifically designed for articulated objects such as animals. Our ap-

proach leverages meshes as the underlying 3D representation, benefiting from their

structured nature and widespread adoption. However, meshes impose fixed-topology

constraints, which limit their ability to capture complex deformations and topological

variations. A recent work (Li et al., 2024) utilizes a hybrid SDF-mesh representation

to avoid topology constraints and enable detailed representations; however, this choice

incurs a heavy computational expense, as it requires extracting a mesh from the SDF

as an intermediate step.

Future work could explore alternative 3D representations, such as 3D Gaussians

(Kerbl et al., 2023) or Radiant Foam (Govindarajan et al., 2025), both of which are

compatible with differentiable rendering and have demonstrated impressive fidelity in

neural rendering tasks. Additionally, incorporating generative priors from diffusion

models, similar to RealFusion (Melas-Kyriazi et al., 2023), could improve reconstruc-

tion quality by leveraging data-driven priors to resolve ambiguities in single-view in-

puts.

Another promising direction is to leverage large-scale synthetic datasets (Deitke

et al., 2023; Hong et al., 2024) or high-quality generated images (Jakab et al., 2024;

Kaye et al., 2025) to improve supervision and enhance generalization across diverse

object categories. Such datasets could help address key challenges, such as the limited
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viewpoint coverage in real-world training data, and improve the robustness of single-

view 3D reconstruction methods for articulated objects. Here, using recent multi-view

diffusion models like MVDream (Shi et al., 2023) can be used to generate multi-view

training data.

In Chapter 4, we investigated the integration of a 3D prior into a self-supervised

learning framework to enhance high-level visual understanding. Specifically, we started

with a pre-trained self-supervised network and incorporated an implicit triplane rep-

resentation (Chan et al., 2022) as a 3D prior. This approach, however, has two key

limitations. First, since we began with an already trained network, the final learned

representation remained too similar to the original one, potentially limiting its capac-

ity for significant improvement. Second, while the triplane representation (Chan et al.,

2022) is computationally efficient, it lacks expressiveness and is primarily designed for

object-centric representations. In contrast, our goal was to learn representations that

capture both objects and scenes. The dataset used in our experiments (e.g., ImageNet

(Deng et al., 2009)) contains a mix of objects and scenes, making this limitation even

more pronounced. Additionally, we relied solely on generated depth maps as the 3D

signal.

Future work could benefit from leveraging multi-view datasets such as Multi-View

ImageNet (Yu et al., 2023; Han et al., 2024) and Objaverse-XL (Deitke et al., 2023)

to facilitate learning more 3D-aware representations. A more promising direction is to

explore self-supervised learning frameworks that incorporate structured 3D represen-

tations as mid-level features. Recent research, such as Gaussian MAE (Rajasegaran

et al., 2025), has demonstrated the potential of this approach by integrating 3D Gaus-

sians (Kerbl et al., 2023) with the Masked Autoencoder (MAE) framework (He et al.,

2022) to learn self-supervised representations with a 3D bottleneck. Explicitly enforc-

ing 3D structure during representation learning may lead to more robust and meaning-

ful feature extraction.

Further investigation in this direction could yield significant improvements. In

contrast, prior approaches that focus on enhancing the 3D nature of already learned

features, such as Zhang et al. (2024) and (Yue et al., 2024), have resulted in only

marginal gains. This suggests that simply refining pre-trained representations may not

be sufficient, and a more fundamental shift toward learning 3D-aware representations

from the outset could be a more effective strategy. Future work could explore different

architectures, loss functions, and training paradigms that leverage structured 3D priors

to further improve self-supervised learning. For instance, a recent framework (Wang
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et al., 2024), which enables the estimation of various 3D parameters directly from

images, might be a promising candidate to explore, as it can reason about 3D while

using an encoder model that is commonly employed and easy to adopt for standard 2D

visual understanding tasks.

Another promising research avenue is to investigate how and when 3D-related in-

formation emerges in neural networks trained on 2D data. Recent work has provided

intriguing hints in this regard. Danier et al. (2025) examined the emergence of monoc-

ular depth cues across different architectures, while Zhan et al. (2024); Sarkar et al.

(2024) showed that generative diffusion models encode aspects of physical scene prop-

erties despite being trained without explicit 3D supervision. These findings suggest

that self-supervised networks, generative models, and multi-modal vision-language

models implicitly capture some degree of 3D structure, yet the mechanisms underlying

this phenomenon remain poorly understood.

A systematic investigation into the origins of this implicit 3D understanding could

yield valuable insights. Key factors such as the statistical properties of training data,

architectural biases, and optimization dynamics likely shape these emergent represen-

tations. Understanding these mechanisms could inform the design of new learning

frameworks that explicitly harness and refine such 3D priors. Beyond theoretical in-

sights, these efforts have direct implications for the development of future embodied

and physical AI systems. By better encoding 3D structure from images, models could

gain stronger spatial reasoning abilities, enabling more robust perception and inter-

action in real-world settings. Such advances are critical for applications in robotic

manipulation, autonomous navigation, and human-AI collaboration, where reasoning

about 3D environments is fundamental.



Bibliography

Alwassel, H., Heilbron, F. C., Escorcia, V., and Ghanem, B. (2018). Diagnosing error

in temporal action detectors. In ECCV.

Amir, S., Gandelsman, Y., Bagon, S., and Dekel, T. (2022). Deep vit features as dense

visual descriptors. ECCVW What is Motion For?

Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. (2005).

Scape: shape completion and animation of people. In SIGGRAPH.

Apple (2024). About face id advanced technology. Accessed: 2025-02-24.

Araslanov, N., Schaub-Meyer, S., and Roth, S. (2021). Dense unsupervised learning

for video segmentation. NeurIPS.

Aygün, M. and Mac Aodha, O. (2024). SAOR: Single-View Articulated Object Re-

construction. In CVPR.

Azad, S., Jain, Y., Garg, R., Rawat, Y. S., and Vineet, V. (2024). Geometer: Probing

depth and height perception of large visual-language models. arXiv:2408.11748.

Banik, P., Li, L., and Dong, X. (2021). A novel dataset for keypoint detection of

quadruped animals from images. arXiv:2108.13958.

Bao, H., Dong, L., Piao, S., and Wei, F. (2022). Beit: Bert pre-training of image

transformers. In ICLR.

Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., and Srini-

vasan, P. P. (2021). Mip-nerf: A multiscale representation for anti-aliasing neural

radiance fields. In ICCV.

Beery, S., Morris, D., and Yang, S. (2019). Efficient pipeline for camera trap image

review. In Data Mining and AI for Conservation Workshop at KDD.

103



104 Bibliography

Beery, S., Van Horn, G., and Perona, P. (2018). Recognition in terra incognita. In

ECCV.

Bhat, S. F., Birkl, R., Wofk, D., Wonka, P., and Müller, M. (2023). Zoedepth: Zero-

shot transfer by combining relative and metric depth. arXiv:2302.12288.

Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A., and Cipolla, R. (2020). Who left the

dogs out? 3d animal reconstruction with expectation maximization in the loop. In

ECCV.

Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In

SIGGRAPH.

Bochkovskii, A., Delaunoy, A., Germain, H., Santos, M., Zhou, Y., Richter, S. R., and

Koltun, V. (2024). Depth pro: Sharp monocular metric depth in less than a second.

arXiv:2410.02073.

Bordes, F., Shekhar, S., Ibrahim, M., Bouchacourt, D., Vincent, P., and Morcos, A. S.

(2023). Pug: Photorealistic and semantically controllable synthetic data for repre-

sentation learning. arXiv:2308.03977.

Brendel, W. and Bethge, M. (2019). Approximating cnns with bag-of-local-features

models works surprisingly well on imagenet. In ICLR.

Bristow, H., Valmadre, J., and Lucey, S. (2015). Dense semantic correspondence where

every pixel is a classifier. In ICCV.

Bruce, V., Georgeson, M. A., and Green, P. R. (2014). Visual perception: Physiology,

psychology and ecology. Psychology Press.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A.

(2021). Emerging properties in self-supervised vision transformers. In ICCV.

Cashman, T. J. and Fitzgibbon, A. (2012). What shape are dolphins? building 3d

morphable models from 2d images. PAMI.

Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., De Mello, S., Gallo, O.,

Guibas, L. J., Tremblay, J., Khamis, S., et al. (2022). Efficient geometry-aware 3d

generative adversarial networks. In CVPR.



Bibliography 105

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., and Sutskever, I. (2020a).

Generative pretraining from pixels. In ICML.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020b). A simple framework for

contrastive learning of visual representations. In ICML.

Chen, X., Fan, H., Girshick, R., and He, K. (2020c). Improved baselines with momen-

tum contrastive learning. arXiv:2003.04297.

Chen, X., Xie, S., and He, K. (2021). An empirical study of training self-supervised

vision transformers. In ICCV.

Cheng, Z., Su, J.-C., and Maji, S. (2021). On equivariant and invariant learning of

object landmark representations. In ICCV.

Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., and Kim, S. (2021). Cats: Cost aggre-

gation transformers for visual correspondence. NeurIPS.

Choe, J., Oh, S. J., Lee, S., Chun, S., Akata, Z., and Shim, H. (2020). Evaluating

weakly supervised object localization methods right. In CVPR.

Choy, C. B., Gwak, J., Savarese, S., and Chandraker, M. (2016a). Universal correspon-

dence network. NeurIPS.

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S. (2016b). 3d-r2n2: A unified

approach for single and multi-view 3d object reconstruction. In ECCV.

Cole, E., Yang, X., Wilber, K., Mac Aodha, O., and Belongie, S. (2022). When does

contrastive visual representation learning work? In CVPR.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.

In CVPR.

Danier, D., Aygün, M., Li, C., Bilen, H., and Mac Aodha, O. (2025). Depthcues:

Evaluating monocular depth perception in large vision models. In CVPR.

David, M. (2016). The correspondence theory of truth. The Oxford Handbook of Truth.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., Steiner,

A. P., Caron, M., Geirhos, R., Alabdulmohsin, I., et al. (2023). Scaling vision

transformers to 22 billion parameters. In ICML.



106 Bibliography

Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel, O., Kusupati, A., Fan, A.,

Laforte, C., Voleti, V., Gadre, S. Y., et al. (2023). Objaverse-xl: A universe of 10m+

3d objects. NeurIPS.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In CVPR.
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Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch,

C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own

latent-a new approach to self-supervised learning. NeurIPS.



108 Bibliography

Gui, J., Chen, T., Cao, Q., Sun, Z., Luo, H., and Tao, D. (2023). A survey of self-

supervised learning from multiple perspectives: Algorithms, theory, applications

and future trends. arXiv:2301.05712.
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Appendix A

SAOR: Single-View Articulated 3D

Object Reconstruction

A.1 Architecture

We use a ResNet-50 (He et al., 2016) as our image encoder fenc in our CUB(Wah

et al., 2011) experiments and the smaller ResNet-18 in quadruped animal experiments.

This is in contrast to much larger ViT-based backbones used in other work (Wu et al.,

2023b). We initialize these encoders from scratch, i.e., no supervised or self-supervised

pre-training is used. The architecture details are presented in the following tables:

deformation network fd in Table A.1, articulation network fa in Table A.2, texture

network ft in Table A.3, and pose network fp in Table A.4. We note the weights used

in our experiments for each loss in Table A.5.

Layer Input Output Dim

Linear (3,512) S◦ lx N ×512

Linear (512,512) φim lz 1×512

2 × Linear (512,128) lx + lz L N ×128

Linear (128,3) l D N ×3

Table A.1. Architecture details of our Deformation Net fd .
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Layer Input Output Dim

Linear (3,512) S◦ lx N ×512

Linear (512,512) φim lz 1×512

Linear (512,128) lx + lz L N ×128

Linear (128,128) L L N ×128

Linear (128,K) L W N ×K

K × Linear (512, 9) φenc π K ×9

Table A.2. Architecture details of our Articulation Net fa. K is the number of parts and N is

the number of vertices, π is camera parameters.

Layer Input Output Dim

Linear (512,512) φim L 512×1×1

Upsample L Lup 512×4×4

Upsample + Conv2D Lup Lup 256×8×8

Upsample + Conv2D Lup Lup 128×16×16

Upsample + Conv2D Lup Lup 64×32×32

Upsample + Conv2D Lup Lup 32×64×64

Upsample + Conv2D Lup Lup 16×128×128

Conv2D Lup T 3×128×128

Table A.3. Architecture details of our Texture Net ft .

Layer Input Output Dim

1 × Linear (512,128) φim L 128

C × Linear (128,6) L rrrp, ttt p 128

Linear (128,C) L ααα 128

Table A.4. Architecture details of our Pose Net fp. C is the number of cameras, and ααα are the

associated scores for each camera (Wu et al., 2023b).
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A.2 Training

In our experiments, we trained two different models: SAOR-101 and SAOR-Birds.

The bird model is trained from scratch on CUB (Wah et al., 2011) for 500 epochs. In

the first 100 epochs, we only learn deformation, and then enable articulation afterward.

The SAOR-101 model is trained in two steps. We first train the model using only

Horse data from LSUN (Yu et al., 2015), then finetune it on all 101 animal categories

downloaded from the iNaturalist website (iNaturalist, 2023). In a similar fashion to the

SAOR-Birds model, we only learn deformation in the first 100 epochs, then allow ar-

ticulation for about 300 epochs on the horse data. Finally, we finetune the model on all

categories on iNaturalist data for 150 epochs. We utilize Adam (Kingma and Ba, 2014)

with a fixed learning rate for optimizing our networks. We note the hyperparameters

used in Table A.5.

Our simplified swap loss leads to easy hyper-parameter selection compared to Uni-

corn (Monnier et al., 2022). For instance, in their swap loss term, the following param-

eters need to be decided: i) feature bank size, ii) minimum and maximum viewpoint

difference, and iii) number of bins to divide samples in the feature bank depending

on the viewpoint. Moreover, they need to do multistage training where they increase

the latent dimensions for the shape and texture codes to obtain similar shapes during

training. Here the number of stages and the dimension of latent codes in each stage

are also hyperparameters. In our method, we eliminated all of these hyperparameters.

Moreover, as we do not use all of the hypotheses cameras to estimate loss during a

forward pass as in (Wu et al., 2023b) and as a result of our simplified swap loss, model

training is six times faster than Unicorn, as they use six cameras during training, for

the same number of epochs.
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Parameter Value/Range

Optimization
Optimizer Adam

Learning Rate 1e-4

Batch Size 96

Epochs 500

Image Size 128 × 128

Mesh
Number of Vertices 2562

Number of Faces 5120

UV Image Size 64 × 128 × 3

Number of Parts 12

Initial Position (0,0,0)

Camera
Translation Range (-0.5, 0.5)

Azim Range (-180,180)

Elev Range (-15, 30)

Roll Range (-30, 30)

FOV 30

Number of Cameras 4

Loss Weights
λrgb 1

λpercp 10

λmask 1

λdepth 1

λswap 1

λsmooth 0.1

λnormal 0.1

λpart 1

λpose 0.05

Table A.5. Training hyperparameters.
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